Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Commun ; 15(1): 1063, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316770

RESUMEN

Immune-mediated inflammatory diseases (IMIDs) are typically characterised by relapsing and remitting flares of inflammation. However, the unpredictability of disease flares impedes their study. Addressing this critical knowledge gap, we use the experimental medicine approach of immunomodulatory drug withdrawal in rheumatoid arthritis (RA) remission to synchronise flare processes allowing detailed characterisation. Exploratory mass cytometry analyses reveal three circulating cellular subsets heralding the onset of arthritis flare - CD45RO+PD1hi CD4+ and CD8+ T cells, and CD27+CD86+CD21- B cells - further characterised by single-cell sequencing. Distinct lymphocyte subsets including cytotoxic and exhausted CD4+ memory T cells, memory CD8+CXCR5+ T cells, and IGHA1+ plasma cells are primed for activation in flare patients. Regulatory memory CD4+ T cells (Treg cells) increase at flare onset, but with dysfunctional regulatory marker expression compared to drug-free remission. Significant clonal expansion is observed in T cells, but not B cells, after drug cessation; this is widespread throughout memory CD8+ T cell subsets but limited to the granzyme-expressing cytotoxic subset within CD4+ memory T cells. Based on our observations, we suggest a model of immune dysregulation for understanding RA flare, with potential for further translational research towards novel avenues for its treatment and prevention.


Asunto(s)
Artritis Reumatoide , Linfocitos T CD8-positivos , Humanos , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD4-Positivos , Subgrupos de Linfocitos T , Linfocitos T Reguladores
2.
Br J Dermatol ; 190(4): 549-558, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38006317

RESUMEN

BACKGROUND: Combined expression of the autophagy-regulatory protein AMBRA1 (activating molecule in Beclin1-regulated autophagy) and the terminal differentiation marker loricrin in the peritumoral epidermis of stage I melanomas can identify tumour subsets at low risk of -metastasis. OBJECTIVES: To validate the combined expression of peritumoral AMBRA1 and loricrin (AMBLor) as a prognostic biomarker able to identify both stage I and II melanomas at low risk of tumour recurrence. METHODS: Automated immunohistochemistry was used to analyse peritumoral AMBRA1 and loricrin expression in geographically distinct discovery (n = 540) and validation (n = 300) cohorts of nonulcerated American Joint Committee on Cancer (AJCC) stage I and II melanomas. AMBLor status was correlated with clinical outcomes in the discovery and validation cohorts separately and combined. RESULTS: Analysis of AMBLor in the discovery cohort revealed a recurrence-free survival (RFS) rate of 95.5% in the AMBLor low-risk group vs. 81.7% in the AMBLor at-risk group (multivariate log-rank, P < 0.001) and a negative predictive value (NPV) of 96.0%. In the validation cohort, AMBLor analysis revealed a RFS rate of 97.6% in the AMBLor low-risk group vs. 78.3% in the at-risk group (multivariate log-rank, P < 0.001) and a NPV of 97.6%. In a multivariate model considering AMBLor, Breslow thickness, age and sex, analysis of the combined discovery and validation cohorts showed that the estimated effect of AMBLor was statistically significant, with a hazard ratio of 3.469 (95% confidence interval 1.403-8.580, P = 0.007) and an overall NPV of 96.5%. CONCLUSIONS: These data provide further evidence validating AMBLor as a prognostic biomarker to identify nonulcerated AJCC stage I and II melanoma tumours at low risk of disease recurrence.


Asunto(s)
Melanoma , Proteínas de la Membrana , Neoplasias Cutáneas , Humanos , Estados Unidos , Melanoma/patología , Pronóstico , Recurrencia Local de Neoplasia/patología , Epidermis/metabolismo , Biomarcadores , Estadificación de Neoplasias , Proteínas Adaptadoras Transductoras de Señales/metabolismo
3.
J Virus Erad ; 8(4): 100091, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36582473

RESUMEN

The HIV reservoir is a population of 1-10 million anatomically dispersed, latently infected memory CD4+ T cells in which HIV DNA is quiescently integrated into human chromosomal DNA. When antiretroviral therapy (ART) is stopped and HIV replication initiates in one of these cells, systemic viral spread resumes, rekindling progression to AIDS. Therefore, HIV latency prevents cure. The detection of many populations of identical HIV sequences at unique integration sites implicates CD4+ T cell proliferation as the critical driver of reservoir sustainment after a prolonged period of effective ART. Initial reservoir formation occurs during the first week of primary infection usually before ART is started. While empirical data indicates that both de novo infection and cellular proliferation generate latently infected cells during early untreated infection, it is not known which of these mechanisms is predominant. We developed a mathematical model that recapitulates the profound depletion and brisk recovery of CD4+ T cells, reservoir creation, and viral load trajectory during primary HIV infection. We extended the model to stochastically simulate individual HIV reservoir clones. This model predicts the first detection of HIV infected clones approximately 5 weeks after infection as has recently been shown in vivo and suggests that substantial, uneven proliferation among clones during the recovery from CD4+ lymphopenia is the most plausible explanation for the observed clonal reservoir distribution during the first year of infection.

4.
Math Biosci Eng ; 19(6): 5699-5716, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35603374

RESUMEN

The rapid spread of highly transmissible SARS-CoV-2 variants combined with slowing pace of vaccination in Fall 2021 created uncertainty around the future trajectory of the epidemic in King County, Washington, USA. We analyzed the benefits of offering vaccination to children ages 5-11 and expanding the overall vaccination coverage using mathematical modeling. We adapted a mathematical model of SARS-CoV-2 transmission, calibrated to data from King County, Washington, to simulate scenarios of vaccinating children aged 5-11 with different starting dates and different proportions of physical interactions (PPI) in schools being restored. Dynamic social distancing was implemented in response to changes in weekly hospitalizations. Reduction of hospitalizations and estimated time under additional social distancing measures are reported over the 2021-2022 school year. In the scenario with 85% vaccination coverage of 12+ year-olds, offering early vaccination to children aged 5-11 with 75% PPI was predicted to prevent 756 (median, IQR 301-1434) hospitalizations cutting youth hospitalizations in half compared to no vaccination and largely reducing the need for additional social distancing measures over the school year. If, in addition, 90% overall vaccination coverage was reached, 60% of remaining hospitalizations would be averted and the need for increased social distancing would almost certainly be avoided. Our work suggests that uninterrupted in-person schooling in King County was partly possible because reasonable precaution measures were taken at schools to reduce infectious contacts. Rapid vaccination of all school-aged children provides meaningful reduction of the COVID-19 health burden over this school year but only if implemented early. It remains critical to vaccinate as many people as possible to limit the morbidity and mortality associated with future epidemic waves.


Asunto(s)
COVID-19 , Vacunas , Adolescente , COVID-19/epidemiología , COVID-19/prevención & control , Niño , Humanos , SARS-CoV-2 , Vacunación , Cobertura de Vacunación , Washingtón/epidemiología
5.
Value Health ; 25(3): 400-408, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35227452

RESUMEN

OBJECTIVES: This article builds on the literature regarding the association between emergency medical service (EMS) response times and patient outcomes (death and severe injury). Three issues are addressed in this article with respect to the empirical estimation of this relationship: the endogeneity of response time (systematically quicker response for higher degrees of urgency), the nonlinearity of this relationship, and the variation between such estimations for different patient outcomes. METHODS: Binomial and multinomial logistic regression models are used to estimate the impact of response time on the probabilities of death and severe injury using data from French Fire and Rescue Services. These models are developed with response time as an explanatory variable and then with road time (dispatch to arrival) hypothesized as representing the exogenous variation within response time. Both models are also applied to data subsets based on response time intervals. RESULTS: The results show that road time yields a higher estimate for the impact of response time on patient outcomes than (total) response time. The impact of road time on patient outcomes is also shown to be nonlinear. These results are of both statistical significance (model coefficients are significant at the 95% confidence level) and economical significance (when taking into account the number of annual interventions performed). CONCLUSIONS: When using heterogeneous data on EMS interventions where endogeneity is a clear issue, road time is a more reliable indicator to estimate the impact of EMS response time on patient outcomes than (total) response time.


Asunto(s)
Servicios Médicos de Urgencia/economía , Servicios Médicos de Urgencia/estadística & datos numéricos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Análisis Costo-Beneficio , Femenino , Francia , Humanos , Lactante , Recién Nacido , Modelos Logísticos , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Gravedad del Paciente , Factores de Tiempo , Adulto Joven
6.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35145025

RESUMEN

Modern HIV research depends crucially on both viral sequencing and population measurements. To directly link mechanistic biological processes and evolutionary dynamics during HIV infection, we developed multiple within-host phylodynamic models of HIV primary infection for comparative validation against viral load and evolutionary dynamics data. The optimal model of primary infection required no positive selection, suggesting that the host adaptive immune system reduces viral load but surprisingly does not drive observed viral evolution. Rather, the fitness (infectivity) of mutant variants is drawn from an exponential distribution in which most variants are slightly less infectious than their parents (nearly neutral evolution). This distribution was not largely different from either in vivo fitness distributions recorded beyond primary infection or in vitro distributions that are observed without adaptive immunity, suggesting the intrinsic viral fitness distribution may drive evolution. Simulated phylogenetic trees also agree with independent data and illuminate how phylogenetic inference must consider viral and immune-cell population dynamics to gain accurate mechanistic insights.


Asunto(s)
Adaptación Fisiológica/genética , Infecciones por VIH/virología , VIH-1/genética , Filogenia , Carga Viral , Aptitud Genética , Humanos , Modelos Genéticos , Mutación , Reproducibilidad de los Resultados
7.
Viruses ; 13(10)2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34696352

RESUMEN

SARS-CoV-2 vaccine clinical trials assess efficacy against disease (VEDIS), the ability to block symptomatic COVID-19. They only partially discriminate whether VEDIS is mediated by preventing infection completely, which is defined as detection of virus in the airways (VESUSC), or by preventing symptoms despite infection (VESYMP). Vaccine efficacy against transmissibility given infection (VEINF), the decrease in secondary transmissions from infected vaccine recipients, is also not measured. Using mathematical modeling of data from King County Washington, we demonstrate that if the Moderna (mRNA-1273QS) and Pfizer-BioNTech (BNT162b2) vaccines, which demonstrated VEDIS > 90% in clinical trials, mediate VEDIS by VESUSC, then a limited fourth epidemic wave of infections with the highly infectious B.1.1.7 variant would have been predicted in spring 2021 assuming rapid vaccine roll out. If high VEDIS is explained by VESYMP, then high VEINF would have also been necessary to limit the extent of this fourth wave. Vaccines which completely protect against infection or secondary transmission also substantially lower the number of people who must be vaccinated before the herd immunity threshold is reached. The limited extent of the fourth wave suggests that the vaccines have either high VESUSC or both high VESYMP and high VEINF against B.1.1.7. Finally, using a separate intra-host mathematical model of viral kinetics, we demonstrate that a 0.6 log vaccine-mediated reduction in average peak viral load might be sufficient to achieve 50% VEINF, which suggests that human challenge studies with a relatively low number of infected participants could be employed to estimate all three vaccine efficacy metrics.


Asunto(s)
COVID-19/prevención & control , COVID-19/transmisión , COVID-19/inmunología , Vacunas contra la COVID-19/farmacología , Humanos , Modelos Teóricos , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Vacunas/farmacología , Washingtón
8.
Sci Rep ; 11(1): 15531, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330945

RESUMEN

Trial results for two COVID-19 vaccines suggest at least 90% efficacy against symptomatic disease (VEDIS). It remains unknown whether this efficacy is mediated by lowering SARS-CoV-2 infection susceptibility (VESUSC) or development of symptoms after infection (VESYMP). We aim to assess and compare the population impact of vaccines with different efficacy profiles (VESYMP and VESUSC) satisfying licensure criteria. We developed a mathematical model of SARS-CoV-2 transmission, calibrated to data from King County, Washington. Rollout scenarios starting December 2020 were simulated with combinations of VESUSC and VESYMP resulting in up to 100% VEDIS. We assumed no reduction of infectivity upon infection conditional on presence of symptoms. Proportions of cumulative infections, hospitalizations and deaths prevented over 1 year from vaccination start are reported. Rollouts of 1 M vaccinations (5000 daily) using vaccines with 50% VEDIS are projected to prevent 23-46% of infections and 31-46% of deaths over 1 year. In comparison, vaccines with 90% VEDIS are projected to prevent 37-64% of infections and 46-64% of deaths over 1 year. In both cases, there is a greater reduction if VEDIS is mediated mostly by VESUSC. The use of a "symptom reducing" vaccine will require twice as many people vaccinated than a "susceptibility reducing" vaccine with the same 90% VEDIS to prevent 50% of the infections and death over 1 year. Delaying the start of the vaccination by 3 months decreases the expected population impact by more than 50%. Vaccines which prevent COVID-19 disease but not SARS-CoV-2 infection, and thereby shift symptomatic infections to asymptomatic infections, will prevent fewer infections and require larger and faster vaccination rollouts to have population impact, compared to vaccines that reduce susceptibility to infection. If uncontrolled transmission across the U.S. continues, then expected vaccination in Spring 2021 will provide only limited benefit.


Asunto(s)
Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/transmisión , Niño , Preescolar , Hospitalización , Humanos , Lactante , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificación , Vacunación , Adulto Joven
9.
Nat Commun ; 12(1): 3449, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103510

RESUMEN

Most COVID-19 vaccines require two doses, however with limited vaccine supply, policymakers are considering single-dose vaccination as an alternative strategy. Using a mathematical model combined with optimization algorithms, we determined optimal allocation strategies with one and two doses of vaccine under various degrees of viral transmission. Under low transmission, we show that the optimal allocation of vaccine vitally depends on the single-dose efficacy. With high single-dose efficacy, single-dose vaccination is optimal, preventing up to 22% more deaths than a strategy prioritizing two-dose vaccination for older adults. With low or moderate single-dose efficacy, mixed vaccination campaigns with complete coverage of older adults are optimal. However, with modest or high transmission, vaccinating older adults first with two doses is best, preventing up to 41% more deaths than a single-dose vaccination given across all adult populations. Our work suggests that it is imperative to determine the efficacy and durability of single-dose vaccines, as mixed or single-dose vaccination campaigns may have the potential to contain the pandemic much more quickly.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Vacunación , Número Básico de Reproducción , COVID-19/transmisión , COVID-19/virología , Relación Dosis-Respuesta Inmunológica , Hospitalización , Humanos , Inmunidad , Unidades de Cuidados Intensivos , SARS-CoV-2/inmunología
11.
medRxiv ; 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33469590

RESUMEN

Most COVID-19 vaccines require two doses, however with limited vaccine supply, policymakers are considering single-dose vaccination as an alternative strategy. Using a mathematical model combined with optimization algorithms, we determined optimal allocation strategies with one and two doses of vaccine under various degrees of viral transmission. Under low transmission, we show that the optimal allocation of vaccine vitally depends on the single-dose efficacy (SDE). With high SDE, single-dose vaccination is optimal, preventing up to 22% more deaths than a strategy prioritizing two-dose vaccination for older adults. With low or moderate SDE, mixed vaccination campaigns with complete coverage of older adults are optimal. However, with modest or high transmission, vaccinating older adults first with two doses is best, preventing up to 41% more deaths than a single-dose vaccination given across all adult populations. Our work suggests that it is imperative to determine the efficacy and durability of single-dose vaccines, as mixed or single-dose vaccination campaigns may have the potential to contain the pandemic much more quickly.

12.
Infect Dis Model ; 6: 24-35, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33294745

RESUMEN

BACKGROUND: In late March 2020, a "Stay Home, Stay Healthy" order was issued in Washington State in response to the COVID-19 pandemic. On May 1, a 4-phase reopening plan began. We investigated whether adjunctive prevention strategies would allow less restrictive physical distancing to avoid second epidemic waves and secure safe school reopening. METHODS: We developed a mathematical model, stratifying the population by age, infection status and treatment status to project SARS-CoV-2 transmission during and after the reopening period. The model was parameterized with demographic and contact data from King County, WA and calibrated to confirmed cases, deaths and epidemic peak timing. Adjunctive prevention interventions were simulated assuming different levels of pre-COVID physical interactions (pC_PI) restored. RESULTS: The best model fit estimated ~35% pC_PI under the lockdown which prevented ~17,000 deaths by May 15. Gradually restoring 75% pC_PI for all age groups between May 15-July 15 would have resulted in ~350 daily deaths by early September 2020. Maintaining <45% pC_PI was required with current testing practices to ensure low levels of daily infections and deaths. Increased testing, isolation of symptomatic infections, and contact tracing permitted 60% pC_PI without significant increases in daily deaths before November and allowed opening of schools with <15 daily deaths. Inpatient antiviral treatment was predicted to reduce deaths significantly without lowering cases or hospitalizations. CONCLUSIONS: We predict that widespread testing, contact tracing and case isolation would allow relaxation of physical distancing, as well as opening of schools, without a surge in local cases and deaths.

13.
J Clin Invest ; 130(6): 2903-2919, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32125285

RESUMEN

The mechanisms underlying rapid elimination of herpes simplex virus-2 (HSV-2) in the human genital tract despite low CD8+ and CD4+ tissue-resident T cell (Trm cell) density are unknown. We analyzed shedding episodes during chronic HSV-2 infection; viral clearance always predominated within 24 hours of detection even when viral load exceeded 1 × 107 HSV DNA copies, and surges in granzyme B and IFN-γ occurred within the early hours after reactivation and correlated with local viral load. We next developed an agent-based mathematical model of an HSV-2 genital ulcer to integrate mechanistic observations of Trm cells in in situ proliferation, trafficking, cytolytic effects, and cytokine alarm signaling from murine studies with viral kinetics, histopathology, and lesion size data from humans. A sufficiently high density of HSV-2-specific Trm cells predicted rapid elimination of infected cells, but our data suggest that such Trm cell densities are relatively uncommon in infected tissues. At lower, more commonly observed Trm cell densities, Trm cells must initiate a rapidly diffusing, polyfunctional cytokine response with activation of bystander T cells in order to eliminate a majority of infected cells and eradicate briskly spreading HSV-2 infection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/inmunología , Herpes Genital/inmunología , Herpesvirus Humano 2/inmunología , Memoria Inmunológica , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/patología , Enfermedad Crónica , Herpes Genital/patología , Humanos , Ratones
14.
PLoS Comput Biol ; 16(2): e1007626, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32084132

RESUMEN

The ongoing Antibody Mediated Prevention (AMP) trials will uncover whether passive infusion of the broadly neutralizing antibody (bNAb) VRC01 can protect against HIV acquisition. Previous statistical simulations indicate these trials may be partially protective. In that case, it will be crucial to identify the mechanism of breakthrough infections. To that end, we developed a mathematical modeling framework to simulate the AMP trials and infer the breakthrough mechanisms using measurable trial outcomes. This framework combines viral dynamics with antibody pharmacokinetics and pharmacodynamics, and will be generally applicable to forthcoming bNAb prevention trials. We fit our model to human viral load data (RV217). Then, we incorporated VRC01 neutralization using serum pharmacokinetics (HVTN 104) and in vitro pharmacodynamics (LANL CATNAP database). We systematically explored trial outcomes by reducing in vivo potency and varying the distribution of sensitivity to VRC01 in circulating strains. We found trial outcomes could be used in a clinical trial regression model (CTRM) to reveal whether partially protective trials were caused by large fractions of VRC01-resistant (IC50>50 µg/mL) circulating strains or rather a global reduction in VRC01 potency against all strains. The former mechanism suggests the need to enhance neutralizing antibody breadth; the latter suggests the need to enhance VRC01 delivery and/or in vivo binding. We will apply the clinical trial regression model to data from the completed trials to help optimize future approaches for passive delivery of anti-HIV neutralizing antibodies.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/prevención & control , Modelos Teóricos , Ensayos Clínicos como Asunto , Infecciones por VIH/inmunología , Humanos
16.
Infect Dis Model ; 4: 73-82, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31025025

RESUMEN

BACKGROUND: The Sabes study, a treatment as prevention intervention in Peru, tested the hypothesis that initiating antiretroviral therapy (ART) early in HIV infection when viral load is high, would markedly reduce onward HIV transmission among high-risk men who have sex with men (MSM) and transgender women (TW). We investigated the potential population-level benefits of detection of HIV early after acquisition and rapid initiation of ART. METHODS: We designed a transmission dynamic model to simulate the HIV epidemic among MSM and TW in Peru, calibrated to data on HIV prevalence and ART coverage from 2004 to 2011. We assessed the impact of an intervention starting in 2018 in which up to 50% of the new infections were diagnosed within three months of acquisition and initiated on ART within 1 month of diagnosis. We estimated the impact of the intervention over 20 years using the cumulative prevented fraction of new HIV infections compared to scenarios without intervention. FINDINGS: Our model suggests that only 19% of the infected MSM and TW are virally suppressed in 2018 and 35%-40% of the new HIV infections are transmitted from contacts with acutely-infected partners. An intervention reaching 10% of all acutely infected MSM and TW is projected to prevent 13.3% [Uncertainty interval: 11.9%-14.3%] of the new infections over 20 years and reduce HIV incidence in 2038 by 24%. Reaching 50% of all acutely infected MSM and TW will increase the prevalence of viral suppression in 2038 to 59% and prevent 41% of expected infections over 20 years. Reaching 50% of the high-risk MSM and TW in acute phase would reduce HIV incidence in 2038 by 60% and prevent 36% of new infections between 2018 and 2038. CONCLUSIONS: Early detection of HIV infections and rapid initiation of ART among MSM is desirable as it would increase the effectiveness of the HIV prevention program in Peru. Targeting high-risk MSM and TW will be highly efficient.

17.
Nat Immunol ; 20(3): 350-361, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30718914

RESUMEN

Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.


Asunto(s)
Agammaglobulinemia/inmunología , Linfocitos B/inmunología , Proteínas de Transporte de Catión/inmunología , Zinc/inmunología , Agammaglobulinemia/genética , Agammaglobulinemia/metabolismo , Animales , Linfocitos B/metabolismo , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/genética , Preescolar , Citosol/inmunología , Citosol/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Linaje , Zinc/metabolismo
19.
Immunol Rev ; 285(1): 113-133, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30129205

RESUMEN

Herpes simplex virus-2 infection is characterized by frequent episodic shedding in the genital tract. Expansion in HSV-2 viral load early during episodes is extremely rapid. However, the virus invariably peaks within 18 hours and is eliminated nearly as quickly. A critical feature of HSV-2 shedding episodes is their heterogeneity. Some episodes peak at 108 HSV DNA copies, last for weeks due to frequent viral re-expansion, and lead to painful ulcers, while others only reach 103 HSV DNA copies and are eliminated within hours and without symptoms. Within single micro-environments of infection, tissue-resident CD8+ T cells (TRM ) appear to contain infection within a few days. Here, we review components of TRM biology relevant to immune surveillance between HSV-2 shedding episodes and containment of infection upon detection of HSV-2 cognate antigen. We then describe the use of mathematical models to correlate large spatial gradients in TRM density with the heterogeneity of observed shedding within a single person. We describe how models have been leveraged for clinical trial simulation, as well as future plans to model the interactions of multiple cellular subtypes within mucosa, predict the mechanism of action of therapeutic vaccines, and describe the dynamics of 3-dimensional infection environment during the natural evolution of an HSV-2 lesion.


Asunto(s)
Herpes Genital/inmunología , Vacunas contra el Virus del Herpes Simple/inmunología , Herpesvirus Humano 2/fisiología , Linfocitos T Reguladores/inmunología , Carga Viral , Animales , Antígenos CD8/metabolismo , Microambiente Celular , Humanos , Activación de Linfocitos , Análisis de la Célula Individual , Activación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...