Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383587

RESUMEN

Obesity results from excessive caloric input associated with overeating and presents a major public health challenge. The hypothalamus has received significant attention for its role in governing feeding behavior and body weight homeostasis. However, extrahypothalamic brain circuits also regulate appetite and consumption by altering sensory perception, motivation, and reward. We recently discovered a population of basal forebrain cholinergic (BFc) neurons that regulate appetite suppression. Through viral tracing methods in the mouse model, we found that BFc neurons densely innervate the basolateral amygdala (BLA), a limbic structure involved in motivated behaviors. Using channelrhodopsin-assisted circuit mapping, we identified cholinergic responses in BLA neurons following BFc circuit manipulations. Furthermore, in vivo acetylcholine sensor and genetically encoded calcium indicator imaging within the BLA (using GACh3 and GCaMP, respectively) revealed selective response patterns of activity during feeding. Finally, through optogenetic manipulations in vivo, we found that increased cholinergic signaling from the BFc to the BLA suppresses appetite and food intake. Together, these data support a model in which cholinergic signaling from the BFc to the BLA directly influences appetite and feeding behavior.


Asunto(s)
Prosencéfalo Basal , Complejo Nuclear Basolateral , Ratones , Animales , Complejo Nuclear Basolateral/fisiología , Prosencéfalo Basal/fisiología , Neuronas Colinérgicas/fisiología , Colinérgicos , Ingestión de Alimentos/fisiología
2.
Sci Rep ; 12(1): 22044, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543829

RESUMEN

Environmental cues and internal states such as mood, reward, or aversion directly influence feeding behaviors beyond homeostatic necessity. The hypothalamus has been extensively investigated for its role in homeostatic feeding. However, many of the neural circuits that drive more complex, non-homeostatic feeding that integrate valence and sensory cues (such as taste and smell) remain unknown. Here, we describe a basal forebrain (BF)-to-lateral habenula (LHb) circuit that directly modulates non-homeostatic feeding behavior. Using viral-mediated circuit mapping, we identified a population of glutamatergic neurons within the BF that project to the LHb, which responds to diverse sensory cues, including aversive and food-related odors. Optogenetic activation of BF-to-LHb circuitry drives robust, reflexive-like aversion. Furthermore, activation of this circuitry suppresses the drive to eat in a fasted state. Together, these data reveal a role of basal forebrain glutamatergic neurons in modulating LHb-associated aversion and feeding behaviors by sensing environmental cues.


Asunto(s)
Prosencéfalo Basal , Habénula , Habénula/fisiología , Prosencéfalo Basal/fisiología , Afecto , Hipotálamo/fisiología , Conducta Alimentaria , Vías Nerviosas/fisiología
3.
Front Neural Circuits ; 16: 886302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719420

RESUMEN

Neural circuits and the cells that comprise them represent the functional units of the brain. Circuits relay and process sensory information, maintain homeostasis, drive behaviors, and facilitate cognitive functions such as learning and memory. Creating a functionally-precise map of the mammalian brain requires anatomically tracing neural circuits, monitoring their activity patterns, and manipulating their activity to infer function. Advancements in cell-type-specific genetic tools allow interrogation of neural circuits with increased precision. This review provides a broad overview of recombination-based and activity-driven genetic targeting approaches, contemporary viral tracing strategies, electrophysiological recording methods, newly developed calcium, and voltage indicators, and neurotransmitter/neuropeptide biosensors currently being used to investigate circuit architecture and function. Finally, it discusses methods for acute or chronic manipulation of neural activity, including genetically-targeted cellular ablation, optogenetics, chemogenetics, and over-expression of ion channels. With this ever-evolving genetic toolbox, scientists are continuing to probe neural circuits with increasing resolution, elucidating the structure and function of the incredibly complex mammalian brain.


Asunto(s)
Encéfalo , Optogenética , Animales , Encéfalo/fisiología , Calcio , Aprendizaje , Mamíferos , Neurotransmisores , Optogenética/métodos
4.
IBRO Neurosci Rep ; 12: 390-398, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35601692

RESUMEN

The lateral septal nucleus (LSN) is a highly interconnected region of the central brain whose activity regulates widespread circuitry. As such, the mechanisms that govern neuronal activity within the LSN have far-reaching implications on numerous brain-wide nuclei, circuits, and behaviors. We found that GABAergic neurons within the LSN express markers that mediate the release of acetylcholine (ACh). Moreover, we show that these vGATLSN neurons release both GABA and ACh onto local glutamatergic LSN neurons. Using both short-term and long-term neuronal labeling techniques we observed expression of the cholinergic neuron marker Choline Acetyltransferase (ChAT) in vGATLSN neurons. These findings provide evidence of cholinergic neurotransmission from vGATLSN neurons, and provide an impetus to examine dynamic co-neurotransmission changes as a potential mechanism that contributes to neuronal and circuit-wide plasticity within the LSN.

5.
Genes Dev ; 36(21-24): 1100-1118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36617877

RESUMEN

Neural circuit plasticity and sensory response dynamics depend on forming new synaptic connections. Despite recent advances toward understanding the consequences of circuit plasticity, the mechanisms driving circuit plasticity are unknown. Adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and circuit integration. We and others have shown that efficient adult-born neuron circuit integration hinges on presynaptic activity in the form of diverse signaling peptides. Here, we demonstrate a novel oxytocin-dependent mechanism of adult-born neuron synaptic maturation and circuit integration. We reveal spatial and temporal enrichment of oxytocin receptor expression within adult-born neurons in the murine olfactory bulb, with oxytocin receptor expression peaking during activity-dependent integration. Using viral labeling, confocal microscopy, and cell type-specific RNA-seq, we demonstrate that oxytocin receptor signaling promotes synaptic maturation of newly integrating adult-born neurons by regulating their morphological development and expression of mature synaptic AMPARs and other structural proteins.


Asunto(s)
Oxitocina , Receptores de Oxitocina , Ratones , Animales , Oxitocina/metabolismo , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Neuronas/fisiología , Bulbo Olfatorio/metabolismo , Neurogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...