Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 42(8): 1730-1742, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37132612

RESUMEN

The pituitary gland is a central regulator of reproduction, producing two gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), which regulate gonadal development, sex steroid synthesis, and gamete maturation. The present study sought to optimize an in vitro test system using pituitary cells isolated from previtellogenic female coho salmon and rainbow trout, focusing on fshb and lhb subunit gene expression. Initially, we optimized culture conditions for duration and benefits of culturing with and without addition of endogenous sex steroids (17ß-estradiol [E2] or 11-ketotestosterone) or gonadotropin-releasing hormone (GnRH). The results suggest that culturing with and without E2 was valuable because it could mimic the (+) feedback effects on Lh that are observed from in vivo studies. After optimizing assay conditions, a suite of 12 contaminants and other hormones was evaluated for their effects on fshb and lhb gene expression. Each chemical was tested at four to five different concentrations up to solubility limitations in cell culture media. The results indicate that more chemicals alter lhb synthesis than fshb. The more potent chemicals were estrogens (E2 and 17α-ethynylestradiol) and the aromatizable androgen testosterone, which induced lhb. The estrogen antagonists 4-OH-tamoxifen and prochloraz decreased the E2-stimulated expression of lhb. Among several selective serotonin reuptake inhibitors tested, the sertraline metabolite norsertraline was notable for both increasing fshb synthesis and decreasing the E2 stimulation of lhb. These results indicate that diverse types of chemicals can alter gonadotropin production in fish. Furthermore, we have shown that pituitary cell culture is useful for screening chemicals with potential endocrine-disrupting activity and can support the development of quantitative adverse outcome pathways in fish. Environ Toxicol Chem 2023;42:1730-1742. © 2023 SETAC.


Asunto(s)
Salmonidae , Animales , Femenino , Salmonidae/metabolismo , Hipófisis/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Estradiol/metabolismo , Reproducción , Esteroides/metabolismo
2.
G3 (Bethesda) ; 12(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100376

RESUMEN

Many salmonids have a male heterogametic (XX/XY) sex determination system, and they are supposed to have a conserved master sex-determining gene (sdY) that interacts at the protein level with Foxl2 leading to the blockage of the synergistic induction of Foxl2 and Nr5a1 of the cyp19a1a promoter. However, this hypothesis of a conserved master sex-determining role of sdY in salmonids is challenged by a few exceptions, one of them being the presence of naturally occurring "apparent" XY Chinook salmon, Oncorhynchus tshawytscha, females. Here, we show that some XY Chinook salmon females have a sdY gene (sdY-N183), with 1 missense mutation leading to a substitution of a conserved isoleucine to an asparagine (I183N). In contrast, Chinook salmon males have both a nonmutated sdY-I183 gene and the missense mutation sdY-N183 gene. The 3-dimensional model of SdY-I183N predicts that the I183N hydrophobic to hydrophilic amino acid change leads to a modification in the SdY ß-sandwich structure. Using in vitro cell transfection assays, we found that SdY-I183N, like the wild-type SdY, is preferentially localized in the cytoplasm. However, compared to wild-type SdY, SdY-I183N is more prone to degradation, its nuclear translocation by Foxl2 is reduced, and SdY-I183N is unable to significantly repress the synergistic Foxl2/Nr5a1 induction of the cyp19a1a promoter. Altogether, our results suggest that the sdY-N183 gene of XY Chinook females is nonfunctional and that SdY-I183N is no longer able to promote testicular differentiation by impairing the synthesis of estrogens in the early differentiating gonads of wild Chinook salmon XY females.


Asunto(s)
Salmón , Salmonidae , Animales , Femenino , Gónadas , Masculino , Salmón/genética , Procesos de Determinación del Sexo/genética , Testículo
3.
Gen Comp Endocrinol ; 281: 30-40, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31102580

RESUMEN

Steelhead Trout (Oncorhynchus mykiss) display a varied life-history, including precocious male maturation at age-1 or age-2. In wild fish, precocious male maturation represents an important component of a diverse life-history portfolio. In hatchery programs, however, it is undesirable if rearing practices increase rates of early male maturation and reduce numbers of anadromous male adults. Our study aimed to develop endocrine and molecular markers for identifying males at early stages of maturation in the spring (prior to smolt release) and evaluated the potential use of these markers for quantifying early male maturation rates at a hatchery scale. In a laboratory study, Skookumchuck winter-run Steelhead Trout were reared at a high growth rate in order to increase the occurrence of precocious male maturation. Fish were lethally sub-sampled in February, prior to the time of smolt release; in May, at the time of smolt release; and in September, when 1+ age maturing males that would spawn the following spring were clearly identifiable based solely on gonadosomatic index (GSI). In February and May samples, we measured GSI, plasma 11-ketotestosterone (11KT), mRNAs for pituitary follicle stimulating hormone (fshb) and luteinizing hormone (lhb) beta subunits, and analyzed stage of spermatogenesis by testis histology. Additionally, in May, we measured testis anti-Müllerian hormone (amh) and insulin-like growth factor 3 (igf3) mRNA. Our primary goal was to evaluate the aforementioned maturation indices for their efficacy in forecasting the proportion of fish initiating early male maturation in the spring (approximately 1 year prior to spermiation), compared to the proportion that actually matured. Combining measures of GSI, plasma 11KT, and pituitary fshb and lhb mRNA expression provided a useful, but conservative, estimate of the proportion of males initiating maturation in the spring (21%) compared to the proportion that were ultimately destined to mature (37%) the following spring. These results suggest that maturation may be less synchronous than previously appreciated and some males may have initiated maturation after our census in May.


Asunto(s)
Biomarcadores/metabolismo , Sistema Endocrino/metabolismo , Oncorhynchus mykiss/genética , Estaciones del Año , Maduración Sexual/genética , Transcriptoma/genética , Animales , Tamaño Corporal , Regulación de la Expresión Génica , Modelos Lineales , Masculino , Oncorhynchus mykiss/anatomía & histología , Oncorhynchus mykiss/sangre , Hipófisis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Testículo/citología , Testículo/metabolismo , Testosterona/análogos & derivados , Testosterona/sangre
4.
Genes (Basel) ; 10(5)2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31075961

RESUMEN

Genetic selection is often implicated as the underlying cause of heritable phenotypic differences between hatchery and wild populations of steelhead trout (Oncorhynchus mykiss) that also differ in lifetime fitness. Developmental plasticity, which can also affect fitness, may be mediated by epigenetic mechanisms such as DNA methylation. Our previous study identified significant differences in DNA methylation between adult hatchery- and natural-origin steelhead from the same population that could not be distinguished by DNA sequence variation. In the current study, we tested whether hatchery-rearing conditions can influence patterns of DNA methylation in steelhead with known genetic backgrounds, and assessed the stability of these changes over time. Eyed-embryos from 22 families of Methow River steelhead were split across traditional hatchery tanks or a simulated stream-rearing environment for 8 months, followed by a second year in a common hatchery tank environment. Family assignments were made using a genetic parentage analysis to account for relatedness among individuals. DNA methylation patterns were examined in the liver, a relatively homogeneous organ that regulates metabolic processes and somatic growth, of juveniles at two time points: after eight months of rearing in either a tank or stream environment and after a subsequent year of rearing in a common tank environment. Further, we analyzed DNA methylation in the sperm of mature 2-year-old males from the earlier described treatments to assess the potential of environmentally-induced changes to be passed to offspring. Hepatic DNA methylation changes in response to hatchery versus stream-rearing in yearling fish were substantial, but few persisted after a second year in the tank environment. However, the early rearing environment appeared to affect how fish responded to developmental and environmental signals during the second year since novel DNA methylation differences were identified in the livers of hatchery versus stream-reared fish after a year of common tank rearing. Furthermore, we found profound differences in DNA methylation due to age, irrespective of rearing treatment. This could be due to smoltification associated changes in liver physiology after the second year of rearing. Although few rearing-treatment effects were observed in the sperm methylome, strong family effects were observed. These data suggest limited potential for intergenerational changes, but highlight the importance of understanding the effects of kinship among studied individuals in order to properly analyze and interpret DNA methylation data in natural populations. Our work is the first to study family effects and temporal dynamics of DNA methylation patterns in response to hatchery-rearing.


Asunto(s)
Acuicultura/métodos , Metilación de ADN , Oncorhynchus mykiss/genética , Animales , Embrión no Mamífero , Femenino , Masculino , Ríos
5.
G3 (Bethesda) ; 8(11): 3723-3736, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30275172

RESUMEN

While the goal of most conservation hatchery programs is to produce fish that are genetically and phenotypically indistinguishable from the wild stocks they aim to restore, there is considerable evidence that salmon and steelhead reared in hatcheries differ from wild fish in phenotypic traits related to fitness. Some evidence suggests that these phenotypic differences have a genetic basis (e.g., domestication selection) but another likely mechanism that remains largely unexplored is that differences between hatchery and wild populations arise as a result of environmentally-induced heritable epigenetic change. As a first step toward understanding the potential contribution of these two possible mechanisms, we describe genetic and epigenetic variation in hatchery and natural-origin adult steelhead, Oncorhynchus mykiss, from the Methow River, WA. Our main objectives were to determine if hatchery and natural-origin fish could be distinguished genetically and whether differences in epigenetic programming (DNA methylation) in somatic and germ cells could be detected between the two groups. Genetic analysis of 72 fish using 936 SNPs generated by Restriction Site Associated DNA Sequencing (RAD-Seq) did not reveal differentiation between hatchery and natural-origin fish at a population level. We performed Reduced Representation Bisulfite Sequencing (RRBS) on a subset of 10 hatchery and 10 natural-origin fish and report the first genome-wide characterization of somatic (red blood cells (RBCs)) and germ line (sperm) derived DNA methylomes in a salmonid, from which we identified considerable tissue-specific methylation. We identified 85 differentially methylated regions (DMRs) in RBCs and 108 DMRs in sperm of steelhead reared for their first year in a hatchery environment compared to those reared in the wild. This work provides support that epigenetic mechanisms may serve as a link between hatchery rearing and adult phenotype in steelhead; furthermore, DMRs identified in germ cells (sperm) highlight the potential for these changes to be passed on to future generations.


Asunto(s)
Eritrocitos/fisiología , Explotaciones Pesqueras , Oncorhynchus mykiss/genética , Espermatozoides/fisiología , Animales , Metilación de ADN , Epigénesis Genética , Femenino , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple
6.
Artículo en Inglés | MEDLINE | ID: mdl-29496550

RESUMEN

Pituitary-hormone signaling plays critical roles in the onset and progression of gametogenesis in vertebrates. This study characterized expression patterns of pituitary gonadotropin beta-subunits (fshb and lhb), brain-type aromatase (cyp19a1b), androgen (ar1, ar2) and estrogen receptors (esr1, esr2a, esr2b), and changes in plasma steroid levels by liquid chromatography/tandem mass spectrometry in wild sablefish (Anoplopoma fimbria, order Scorpaeniformes) during a complete reproductive cycle. Transcripts for fshb increased during early gametogenesis and peaked in late vitellogenic females and late recrudescent males, while expression of lhb reached maximum levels in periovulatory and spermiating fish. Pituitary levels of cyp19a1b and ar1 were strongly correlated with those of lhb in females and males, increasing during gametogenesis and reaching maximum levels prior to spawning. By contrast, expression of ar2, and the three estrogen receptors differed between female and male sablefish. 17ß-estradiol (E2) was the dominant steroid in females during vitellogenesis, while a range of at least 6 steroids (11ß-hydroxyandrostenedione, testosterone [T], E2, 11-ketotestosterone [11KT], 11-deoxycortisol, and 17α,20ß,21-trihydroxyprogesterone) were detected at similar levels in males during testicular development. Prior to spawning, a marked increase in 4-androstenedione, T, 11KT and E2 was found in both periovulatory females and spermiating males. In conclusion, the concomitant changes in plasma androgen levels and pituitary ar1 expression during gametogenesis suggest a specific role for androgens in pituitary hormone regulation of reproduction in sablefish. Further, our data highlight the importance of E2 during final stages of maturation in this species, which may regulate the transcription of pituitary lhb in a paracrine fashion.


Asunto(s)
Aromatasa/metabolismo , Encéfalo/enzimología , Peces/fisiología , Hormonas Esteroides Gonadales/metabolismo , Gonadotropinas Hipofisarias/metabolismo , Oogénesis , ARN Mensajero/genética , Receptores Androgénicos/genética , Receptores de Estrógenos/genética , Estaciones del Año , Espermatogénesis , Espermatozoides/citología , Esteroides/sangre , Animales , Femenino , Peces/metabolismo , Masculino , Hipófisis/enzimología , Hipófisis/metabolismo , Esteroides/metabolismo , Espectrometría de Masas en Tándem , Vitelogeninas/biosíntesis
7.
Mol Cell Endocrinol ; 460: 104-122, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28711606

RESUMEN

Although estrogens have been generally considered to play a critical role in ovarian differentiation in non-mammalian vertebrates, the specific functions of estrogens during ovarian differentiation remain unclear. We isolated two mutants with premature stops in the ovarian aromatase (cyp19a1) gene from an N-ethyl-N-nitrosourea-based gene-driven mutagenesis library of the medaka, Oryzias latipes. In XX mutants, gonads first differentiated into normal ovaries containing many ovarian follicles that failed to accumulate yolk. Subsequently, ovarian tissues underwent extensive degeneration, followed by the appearance of testicular tissues on the dorsal side of ovaries. In the newly formed testicular tissue, strong expression of gsdf was detected in sox9a2-positive somatic cells surrounding germline stem cells suggesting that gsdf plays an important role in testicular differentiation during estrogen-depleted female-to-male sex reversal. We conclude that endogenous estrogens synthesized after fertilization are not essential for early ovarian differentiation but are critical for the maintenance of adult ovaries.


Asunto(s)
Mutación con Pérdida de Función/genética , Oryzias/genética , Ovario/patología , Procesos de Determinación del Sexo , Maduración Sexual , Secuencia de Aminoácidos , Animales , Aromatasa/química , Aromatasa/genética , Secuencia de Bases , Linaje de la Célula , Regulación hacia Abajo/genética , Estrógenos/biosíntesis , Femenino , Perfilación de la Expresión Génica , Masculino , Folículo Ovárico/patología , Procesos de Determinación del Sexo/genética , Testículo/patología , Regulación hacia Arriba/genética , Vitelogeninas/metabolismo
8.
Biol Reprod ; 97(5): 731-745, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29045593

RESUMEN

Recent studies using several teleost models have revealed that androgens increase the size of previtellogenic (primary and/or early secondary) ovarian follicles. To explore our hypothesis that androgens drive the development of primary follicles into early secondary follicles, and to determine the mechanisms underlying these androgenic effects, we exposed juvenile coho salmon to near-physiological and relatively sustained levels of the nonaromatizable androgen 11-ketotestosterone (11-KT). This resulted in significant growth of primary ovarian follicles after 10 and 20 days, with follicles after 20 days displaying a morphological phenotype characteristic of early secondary follicles (presence of cortical alveoli). Utilizing the same experimental approach, we then analyzed how 11-KT rapidly altered the ovarian transcriptome after 1 and 3 days of treatment. RNA-Seq analysis revealed that 69 (day 1) and 1,022 (day 3) contiguous sequences (contigs) were differentially expressed relative to controls. The differentially expressed contigs mapped to genes including those encoding proteins involved in gonadotropin, steroid hormone, and growth factor signaling, and in cell and ovarian development, including genes with putative androgen-response elements. Biological functions and canonical pathways identified as potentially altered by 11-KT include those involved in ovarian development, tissue differentiation and remodeling, and lipid metabolism. We conclude that androgens play a major role in stimulating primary ovarian follicle development and the transition into secondary growth.


Asunto(s)
Andrógenos/farmacología , Oncorhynchus kisutch , Folículo Ovárico/efectos de los fármacos , Testosterona/análogos & derivados , Transcriptoma/efectos de los fármacos , Animales , Femenino , Testosterona/farmacología
9.
PLoS One ; 12(9): e0184413, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28886138

RESUMEN

Sablefish (Anoplopoma fimbria) is a marine groundfish that supports valuable fisheries in the North Pacific Ocean and holds promise for marine aquaculture. Limited information is available, however, about its reproductive biology. This study aimed to characterize the complete reproductive cycle, including seasonal changes in gonadal development (macroscopic and histological), plasma sex steroid levels (17ß-estradiol -E2-, and 11-ketotestosterone -11KT-), gonadosomatic and hepatosomatic indices (GSI, and HSI), and condition factor (K) of female and male sablefish captured off the Washington coast. Adult fish (209 females, 159 males) were caught by longline monthly from August 2012 to August 2013. Early signs of recruitment of ovarian follicles into secondary growth, indicated by oocytes containing small yolk granules and cortical alveoli, were first observed in March. Oogenesis progressed during spring and summer, and fully vitellogenic follicles were first observed in July. Vitellogenic growth was correlated with increases in plasma E2, GSI, HSI and K. Periovulatory females, indicated by fully-grown oocytes with migrating germinal vesicles and hydrated oocytes, were found from November to February. At this stage, plasma E2 and GSI reached maximal levels. In males, proliferating cysts containing spermatocytes were first observed in April. Testicular development proceeded during spring and summer, a period during which all types of male germ cells were found. The first clusters of spermatozoa appeared in July, concomitant with a 5.2-fold increase in GSI. Spermiating males were observed from November to April; at this time, spermatids were absent or greatly reduced, and testis lobules were filled with spermatozoa. The highest levels of plasma 11KT were found in males at this stage. Postspawning ovaries and testes, and basal steroids levels were found in fish captured from February to April. These results suggest that sablefish in coastal Washington initiate their reproductive cycle in March/April and spawn primarily in January/February.


Asunto(s)
Peces , Reproducción , Animales , Femenino , Geografía , Hormonas Esteroides Gonadales/sangre , Gónadas , Masculino , Folículo Ovárico , Ovario/citología , Ovario/embriología , Carácter Cuantitativo Heredable , Estaciones del Año , Testículo/citología , Testículo/embriología , Washingtón
10.
Aquat Toxicol ; 178: 118-31, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27475653

RESUMEN

It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17ß-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to estrogenic activity of the WWTP effluents. These results suggest that lhb gene expression may be a sensitive index of acute exposure to estrogenic chemicals in juvenile coho salmon. Further work is needed to determine the kinetics and specificity of lhb induction to evaluate its utility as a potential indicator of estrogen exposure in immature fish.


Asunto(s)
Disruptores Endocrinos/toxicidad , Gonadotropinas Hipofisarias/metabolismo , Oncorhynchus kisutch/metabolismo , Hipófisis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Etinilestradiol/toxicidad , Femenino , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/metabolismo , Expresión Génica/efectos de los fármacos , Gonadotropinas Hipofisarias/genética , Hormona Luteinizante/genética , Hormona Luteinizante/metabolismo , Oncorhynchus kisutch/crecimiento & desarrollo , Hipófisis/metabolismo , ARN Mensajero/metabolismo , Acetato de Trembolona/toxicidad , Eliminación de Residuos Líquidos
11.
Artículo en Inglés | MEDLINE | ID: mdl-27387444

RESUMEN

At the completion of vitellogenesis, the steroid biosynthetic pathway in teleost ovarian follicles switches from estradiol-17ß (E2) to maturational progestin production, associated with decreased follicle stimulating hormone (Fsh) and increased luteinizing hormone (Lh) signaling. This study compared effects of gonadotropins, human insulin-like growth factor-I (IGF1), and cAMP/protein kinase A signaling (forskolin) on E2 production and levels of mRNAs encoding steroidogenic proteins and gonadotropin receptors using midvitellogenic (MV) and late/postvitellogenic (L/PV) ovarian follicles of rainbow trout. Fsh, Lh and forskolin, but not IGF1, increased testosterone and E2 production in MV and L/PV follicles. Fsh increased steroidogenic acute regulatory protein (star; MV), 3ß-hydroxysteroid dehydrogenase/Δ(5-4) isomerase (hsd3b; MV) and P450 aromatase (cyp19a1a; MV) transcript levels. Lh increased star mRNA levels (MV, L/PV) but reduced cyp19a1a transcripts in L/PV follicles. At both follicle stages, IGF1 reduced levels of hsd3b transcripts. In MV follicles, IGF1 decreased P450 side-chain cleavage enzyme (cyp11a1) transcripts but increased cyp19a1a transcripts. In MV follicles only, forskolin increased star and hsd3b transcripts. Forskolin reduced MV follicle cyp11a1 transcripts and reduced cyp19a1a transcripts in follicles at both stages. Fsh and Lh reduced fshr transcripts in L/PV follicles. Lh also reduced lhcgr transcripts (L/PV). IGF1 had no effect on gonadotropin receptor transcripts. Forskolin reduced MV follicle fshr transcript levels and reduced lhcgr transcripts in L/PV follicles. These results reveal hormone- and stage-specific transcriptional regulation of steroidogenic protein and gonadotropin receptor genes and suggest that the steroidogenic shift at the completion of vitellogenesis involves loss of stimulatory effects of Fsh and Igfs on cyp19a1a expression and inhibition of cyp19a1a transcription by Lh.


Asunto(s)
Proteínas de Peces/genética , Hormonas Esteroides Gonadales/biosíntesis , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/fisiología , Receptores de Gonadotropina/genética , Animales , Aromatasa/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Colforsina/farmacología , AMP Cíclico/metabolismo , Estradiol/biosíntesis , Femenino , Factor I del Crecimiento Similar a la Insulina/metabolismo , Complejos Multienzimáticos/genética , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/fisiología , Fosfoproteínas/genética , Progesterona Reductasa/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esteroide Isomerasas/genética , Testosterona/biosíntesis , Vitelogénesis/genética , Vitelogénesis/fisiología
12.
Artículo en Inglés | MEDLINE | ID: mdl-27320185

RESUMEN

Molecular processes that either regulate ovarian atresia or are consequences of atresia are poorly understood in teleost fishes. We hypothesized that feed restriction that perturbs normal ovarian growth and induces follicular atresia would alter ovarian gene expression patterns. Previtellogenic, two-year old coho salmon (Oncorhynchus kisutch) were subjected to prolonged fasting to induce atresia or maintained on a normal feeding schedule that would promote continued ovarian development. To identify genes that were specifically up- or down-regulated during oocyte growth in healthy, growing fish compared to fasted fish, reciprocal suppression subtractive hybridization (SSH) cDNA libraries were generated using ovaries from fed and fasted animals. Differential expression of genes identified by SSH was confirmed with quantitative PCR. The SSH library representing genes elevated in ovaries of fed fish relative to those of fasted fish contained steroidogenesis-related genes (e.g., hydroxy-delta-5-steroid dehydrogenase), Tgf-beta superfamily members (e.g., anti-Mullerian hormone) and cytoskeletal intermediate filament proteins (e.g., type I keratin s8). Overall, these genes were associated with steroid production, cell proliferation and differentiation, and ovarian epithelialization. The library representing genes elevated in ovaries of fasted fish relative to fed fish contained genes associated with apoptosis (e.g., programmed cell death protein 4), cortical alveoli (e.g., alveolin), the zona pellucida (e.g., zona pellucida protein c), and microtubules (e.g., microtubule associated protein tau). Elevated expression of this suite of genes was likely associated with the initiation of atresia and/or a reduced rate of follicle development in response to fasting. This study revealed ovarian genes involved in normal early secondary oocyte growth and potential early markers of atresia.


Asunto(s)
Atresia Folicular/genética , Oncorhynchus kisutch/genética , Animales , Ayuno , Femenino , Proteínas de Peces/genética , Atresia Folicular/fisiología , Expresión Génica , Biblioteca de Genes , Oncorhynchus kisutch/crecimiento & desarrollo , Oncorhynchus kisutch/fisiología , Folículo Ovárico/citología , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Esteroides/biosíntesis , Técnicas de Hibridación Sustractiva , Factor de Crecimiento Transformador beta/genética
13.
Gen Comp Endocrinol ; 221: 101-13, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25843684

RESUMEN

Efforts to establish sustainable and efficient aquaculture production of sablefish (Anoplopoma fimbria) have been constrained by delayed puberty in cultured females. This study integrates a series of experiments aimed at gaining an understanding of the reproductive physiology of puberty in female sablefish. We detected transcripts for the dopamine D2 receptor (drd2) in brain, pituitary and ovary of sablefish, and prepubertal females exhibited significantly elevated brain and pituitary drd2 expression relative to wild maturing females. Treatments with sustained-release cholesterol pellets containing testosterone (T) and the dopamine D2 receptor antagonist, metoclopramide (Met), stimulated expression of pituitary luteinizing hormone beta subunit (lhb) and follicle-stimulating hormone beta subunit (fshb), respectively, in prepubertal females, whereas a combination of T and gonadotropin-releasing hormone agonist (GnRHa) had a strong synergistic effect on lhb expression (2000-fold higher than control). Although T induced a significant increase in the maximum ovarian follicle volume, none of the treatments tested stimulated onset of vitellogenesis. Using liquid chromatography/tandem mass spectrometry, we demonstrated that Met stimulated production of T by previtellogenic ovarian follicles in vitro, whereas gonadotropin preparations enhanced 17α-hydroxyprogesterone, androstenedione (A4), T and 17ß-estradiol (E2) production. Treatment with T increased production of A4, 11ß-hydroxyandrostenedione, 11ß-hydroxytestosterone, E2, 11-ketotestosterone, and 5α-dihydrotestosterone (DHT). Interestingly, in the presence of high doses of T the previtellogenic ovary preferentially produced A4 and DHT over any other metabolite. Our data suggest the existence of dopamine inhibition of the reproductive axis in female sablefish. Treatments with Met and T elevated gonadotropin mRNAs in prepubertal females but failed to stimulate the transition into vitellogenic growth, suggesting a possible failure in pituitary gonadotropin protein synthesis/release. Previtellogenic ovarian follicles of sablefish are equipped to synthesize steroids, including those required for vitellogenic growth, and DHT, a steroid hormone whose role in reproduction of fishes remains unknown.


Asunto(s)
Peces/crecimiento & desarrollo , Gonadotropinas/metabolismo , Metoclopramida/farmacología , Ovario/citología , Pubertad/fisiología , Reproducción/fisiología , Maduración Sexual/fisiología , Animales , Dihidrotestosterona/metabolismo , Antagonistas de los Receptores de Dopamina D2/farmacología , Ensayo de Inmunoadsorción Enzimática , Estradiol/farmacología , Femenino , Peces/metabolismo , Hormona Folículo Estimulante/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hormona Liberadora de Gonadotropina/farmacología , Ovario/efectos de los fármacos , Ovario/metabolismo , Hipófisis/citología , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Pubertad/efectos de los fármacos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducción/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Maduración Sexual/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Testosterona/análogos & derivados , Testosterona/farmacología
14.
PLoS One ; 9(12): e114176, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25485989

RESUMEN

The function of follicle-stimulating hormone (Fsh) during oogenesis in fishes is poorly understood. Using coho salmon as a fish model, we recently identified a suite of genes regulated by Fsh in vitro and involved in ovarian processes mostly unexplored in fishes, like cell proliferation, differentiation, survival or extracellular matrix (ECM) remodeling. To better understand the role of these Fsh-regulated genes during oocyte growth in fishes, we characterized their mRNA levels at discrete stages of the ovarian development in coho salmon. While most of the transcripts were expressed at low levels during primary growth (perinucleolus stage), high expression of genes associated with cell proliferation (pim1, pcna, and mcm4) and survival (ddit4l) was found in follicles at this stage. The transition to secondary oocyte growth (cortical alveolus and lipid droplet stage ovarian follicles) was characterized by a marked increase in the expression of genes related to cell survival (clu1, clu2 and ivns1abpa). Expression of genes associated with cell differentiation and growth (wt2l and adh8l), growth factor signaling (inha), steroidogenesis (cyp19a1a) and the ECM (col1a1, col1a2 and dcn) peaked in vitellogenic follicles, showing a strong and positive correlation with transcripts for fshr. Other genes regulated by Fsh and associated with ECM function (ctgf, wapl and fn1) and growth factor signaling (bmp16 and smad5l) peaked in maturing follicles, along with increases in steroidogenesis-related gene transcripts. In conclusion, ovarian genes regulated by Fsh showed marked differences in their expression patterns during oogenesis in coho salmon. Our results suggest that Fsh regulates different ovarian processes at specific stages of development, likely through interaction with other intra- or extra-ovarian factors.


Asunto(s)
Hormona Folículo Estimulante/metabolismo , Oncorhynchus kisutch/genética , Oncorhynchus kisutch/metabolismo , Oocitos/metabolismo , Oogénesis/genética , Transcriptoma , Animales , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Receptores de HFE/genética , Receptores de HFE/metabolismo
15.
Toxicol Sci ; 136(2): 413-29, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24072461

RESUMEN

The toxicokinetics of trenbolone was characterized during 500 ng/l water exposures in female rainbow trout (Oncorhynchus mykiss) and fathead minnows (Pimephales promelas). Related experiments measured various toxicodynamic effects of exposure. In both species, trenbolone was rapidly absorbed from the water and reached peak plasma levels within 8h of exposure. Afterwards, trenbolone concentrations in trout (66-95 ng/ml) were 2-6 times higher compared with minnows (15-29 ng/ml), which was attributable to greater plasma binding in trout. During water exposures, circulating levels of estradiol (E2) rapidly decreased in both species to a concentration that was 25%-40% of control values by 8-24h of exposure and then remained relatively unchanged for the subsequent 6 days of exposure. In trout, changes in circulating levels of follicle-stimulating hormone were also significantly greater after trenbolone exposure, relative to controls. In both species, the pharmacokinetics of injected E2-d3 was altered by trenbolone exposure with an increase in total body clearance and a corresponding decrease in elimination half-life. The unbound percentage of E2 in trout plasma was 0.25%, which was similar in pre- or postvitellogenic female trout. Subsequent incubation with trenbolone caused the unbound percentage to significantly increase to 2.4% in the previtellogenic trout plasma. iTRAQ-based toxicoproteomic studies in minnows exposed to 5, 50, and 500 ng/l trenbolone identified a total of 148 proteins with 19 downregulated including vitellogenin and 18 upregulated. Other downregulated proteins were fibrinogens, α-2-macroglobulin, and transferrin. Upregulated proteins included amine oxidase, apolipoproteins, parvalbumin, complement system proteins, and several uncharacterized proteins. The results indicate trenbolone exposure is a highly dynamic process in female fish with uptake and tissue equilibrium quickly established, leading to both rapid and delayed toxicodynamic effects.


Asunto(s)
Anabolizantes/toxicidad , Proteómica , Acetato de Trembolona/toxicidad , Anabolizantes/farmacocinética , Animales , Cromatografía Liquida , Cyprinidae , Femenino , Cromatografía de Gases y Espectrometría de Masas , Oncorhynchus mykiss , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Acetato de Trembolona/farmacocinética
16.
Aquat Toxicol ; 142-143: 146-63, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24007788

RESUMEN

Considerable research has been done on the effects of endocrine disrupting chemicals (EDCs) on reproduction and gene expression in the brain, liver and gonads of teleost fish, but information on impacts to the pituitary gland are still limited despite its central role in regulating reproduction. The aim of this study was to further our understanding of the potential effects of natural and synthetic estrogens on the brain-pituitary-gonad axis in fish by determining the effects of 17α-ethynylestradiol (EE2) on the pituitary transcriptome. We exposed sub-adult coho salmon (Oncorhynchus kisutch) to 0 or 12 ng EE2/L for up to 6 weeks and effects on the pituitary transcriptome of females were assessed using high-throughput Illumina(®) sequencing, RNA-Seq and pathway analysis. After 1 or 6 weeks, 218 and 670 contiguous sequences (contigs) respectively, were differentially expressed in pituitaries of EE2-exposed fish relative to control. Two of the most highly up- and down-regulated contigs were luteinizing hormone ß subunit (241-fold and 395-fold at 1 and 6 weeks, respectively) and follicle-stimulating hormone ß subunit (-3.4-fold at 6 weeks). Additional contigs related to gonadotropin synthesis and release were differentially expressed in EE2-exposed fish relative to controls. These included contigs involved in gonadotropin releasing hormone (GNRH) and transforming growth factor-ß signaling. There was an over-representation of significantly affected contigs in 33 and 18 canonical pathways at 1 and 6 weeks, respectively, including circadian rhythm signaling, calcium signaling, peroxisome proliferator-activated receptor (PPAR) signaling, PPARα/retinoid x receptor α activation, and netrin signaling. Network analysis identified potential interactions between genes involved in circadian rhythm and GNRH signaling, suggesting possible effects of EE2 on timing of reproductive events.


Asunto(s)
Etinilestradiol/toxicidad , Oncorhynchus kisutch/fisiología , Hipófisis/efectos de los fármacos , Transcriptoma , Contaminantes Químicos del Agua/toxicidad , Animales , Sistema Endocrino/efectos de los fármacos , Femenino , Hormona Folículo Estimulante/genética , Gónadas/efectos de los fármacos , Hormona Luteinizante/genética , Oncorhynchus kisutch/genética
17.
Gen Comp Endocrinol ; 193: 37-47, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23892013

RESUMEN

Efforts to establish an aquaculture industry for sablefish (Anoplopoma fimbria) are constrained by reproductive dysfunction in wild-caught fish and by lack of reproduction of F1 females. Toward a better understanding of the reproductive dysfunction of captive broodstock, full-length cDNAs encoding the sablefish gonadotropin subunits (fshb, lhb and cga) and their receptors (fshr and lhcgr) were cloned, sequenced and quantitative real-time PCR assays developed. Sablefish gonadotropin subunits display some unique features, such as two additional Cys residues in the N-terminal region of Fshb and a lack of potential N-glycosylation sites in Fshb and Lhb, whereas Fshr and Lhcgr possess conserved structural characteristics described in other vertebrates. Wild females captured in fall completed gametogenesis in captivity the next spawning season, whereas females captured three months earlier, during summer, failed to mature. Interestingly, these wild non-maturing females exhibited similar reproductive features as prepubertal F1 females, including low levels of pituitary gonadotropin and ovarian receptor mRNAs and plasma sex steroids, and ovarian follicles arrested at the perinucleolus stage. In conclusion, this study described the cloning, molecular characterization and development of qPCRs for sablefish gonadotropins and their receptors. Rearing conditions may impair vitellogenic growth of ovarian follicles in sablefish, compromising the reproductive success of broodstock.


Asunto(s)
Peces/metabolismo , Gonadotropinas/metabolismo , Receptores de Gonadotropina/metabolismo , Animales , ADN Complementario/genética , Femenino , Peces/genética , Gametogénesis/genética , Gametogénesis/fisiología , Gonadotropinas/genética , Masculino , Folículo Ovárico/metabolismo , Receptores de Gonadotropina/genética
18.
PLoS One ; 8(7): e69615, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23894510

RESUMEN

Exploitation of fisheries resources has unintended consequences, not only in the bycatch and discard of non-target organisms, but also in damage to targeted fish that are injured by gear but not landed (non-retention). Delayed mortality due to non-retention represents lost reproductive potential in exploited stocks, while not contributing to harvest. Our study examined the physiological mechanisms by which delayed mortality occurs and the extent to which injuries related to disentanglement from commercial gear compromise reproductive success in spawning stocks of Pacific salmon (Oncorhynchus spp.). We found evidence for elevated stress in fish injured via non-retention in gillnet fisheries. Plasma cortisol levels correlated with the severity of disentanglement injury and were elevated in fish that developed infections related to disentanglement injuries. We also analyzed sex steroid concentrations in females (estradiol-17ß and 17,20ß-dihydroxy-4-pregnen-3-one) to determine whether non-retention impairs reproductive potential in escaped individuals. We demonstrate evidence for delayed or inhibited maturation in fish with disentanglement injuries. These findings have important implications for effective conservation and management of exploited fish stocks and suggest means to improve spawning success in such stocks if retention in commercial fisheries is improved and incidental mortality reduced.


Asunto(s)
Explotaciones Pesqueras , Peces/sangre , Peces/lesiones , Reproducción/fisiología , Animales , Estradiol/sangre , Femenino , Peces/fisiología , Hidrocortisona/sangre , Hidroxiprogesteronas/sangre , Salmón/sangre , Salmón/lesiones , Salmón/fisiología
19.
Mol Cell Endocrinol ; 366(1): 38-52, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23200633

RESUMEN

Follicle-stimulating hormone (Fsh) function in fishes is poorly understood. This study aimed to reveal Fsh-regulated genes in coho salmon previtellogenic ovarian follicles in vitro. Four suppression subtractive hybridization libraries were generated with RNA isolated from Fsh-treated and control follicles or follicle cell-enriched tissue fractions. Fsh induced steroidogenesis and dynamically upregulated several genes predominantly expressed in follicle cells, including WAP domain-containing protease, connexin 34.3, clusterin (clu1, clu2), fibronectin, wilms tumor 2-like, and influenza virus NS1A-binding protein a. Genes downregulated by Fsh included connective tissue growth factor, alcohol dehydrogenase 8-like, and serine/threonine-protein kinase pim-1. This study demonstrates for the first time in fishes that Fsh influences the expression of a unique suite of ovarian genes involved in processes like cell communication, survival and differentiation, and extracellular matrix remodeling. Collectively, these findings suggest that Fsh and/or steroids induce differentiation of granulosa cells and remodeling of the follicle in preparation for onset of vitellogenesis.


Asunto(s)
Hormona Folículo Estimulante/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Oncorhynchus kisutch/crecimiento & desarrollo , Oncorhynchus kisutch/genética , Oocitos/citología , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Animales , Membrana Basal/efectos de los fármacos , Membrana Basal/metabolismo , Comunicación Celular/efectos de los fármacos , Comunicación Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Femenino , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Ovario/citología , Ovario/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismo
20.
Reprod Biol Endocrinol ; 9: 52, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21501524

RESUMEN

BACKGROUND: Throughout oogenesis, cell-cell communication via gap junctions (GJs) between oocytes and surrounding follicle cells (theca and granulosa cells), and/or amongst follicle cells is required for successful follicular development. To gain a fundamental understanding of ovarian GJs in teleosts, gene transcripts encoding GJ proteins, connexins (cx), were identified in the coho salmon, Oncorhynchus kisutch, ovary. The spatiotemporal expression of four ovarian cx transcripts was assessed, as well as their potential regulation by follicle-stimulating hormone (FSH), luteinizing hormone (LH) and insulin-like growth factor 1 (IGF1). METHODS: Salmonid ovarian transcriptomes were mined for cx genes. Four gene transcripts designated cx30.9, cx34.3, cx43.2, and cx44.9 were identified. Changes in gene expression across major stages of oogenesis were determined with real-time, quantitative RT-PCR (qPCR) and cx transcripts were localized to specific ovary cell-types by in situ hybridization. Further, salmon ovarian follicles were cultured with various concentrations of FSH, LH and IGF1 and effects of each hormone on cx gene expression were determined by qPCR. RESULTS: Transcripts for cx30.9 and cx44.9 were highly expressed at the perinucleolus (PN)-stage and decreased thereafter. In contrast, transcripts for cx34.3 and cx43.2 were low at the PN-stage and increased during later stages of oogenesis, peaking at the mid vitellogenic (VIT)-stage and maturing (MAT)-stage, respectively. In situ hybridization revealed that transcripts for cx34.3 were only detected in granulosa cells, but other cx transcripts were detected in both oocytes and follicle cells. Transcripts for cx30.9 and cx44.9 were down-regulated by FSH and IGF1 at the lipid droplet (LD)-stage, whereas transcripts for cx34.3 were up-regulated by FSH and IGF1 at the LD-stage, and LH and IGF1 at the late VIT-stage. Transcripts for cx43.2 were down-regulated by IGF1 at the late VIT-stage and showed no response to gonadotropins. CONCLUSION: Our findings demonstrate the presence and hormonal regulation of four different cx transcripts in the salmon ovary. Differences in the spatiotemporal expression profile and hormonal regulation of these cx transcripts likely relate to their different roles during ovarian follicle differentiation and development.


Asunto(s)
Conexinas/genética , Hormonas/farmacología , Oncorhynchus kisutch/genética , Oogénesis/efectos de los fármacos , Oogénesis/genética , Ovario/metabolismo , Animales , Células Cultivadas , Clonación Molecular , Conexinas/metabolismo , Estradiol/farmacología , Femenino , Hormona Folículo Estimulante/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/farmacología , Hormona Luteinizante/farmacología , Oncorhynchus kisutch/metabolismo , Ovario/fisiología , Filogenia , Factores de Tiempo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...