Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 119(6): 752-767, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37170643

RESUMEN

Borrelia spirochetes are unique among diderm bacteria in their lack of lipopolysaccharide (LPS) in the outer membrane (OM) and their abundance of surface-exposed lipoproteins with major roles in transmission, virulence, and pathogenesis. Despite their importance, little is known about how surface lipoproteins are translocated through the periplasm and the OM. Here, we characterized Borrelia burgdorferi BB0838, a distant homolog of the OM LPS assembly protein LptD. Using a CRISPR interference approach, we showed that BB0838 is required for cell growth and envelope stability. Upon BB0838 knockdown, surface lipoprotein OspA was retained in the inner leaflet of the OM, as determined by its inaccessibility to in situ proteolysis but its presence in OM vesicles. The topology of the OM porin/adhesin P66 remained unaffected. Quantitative mass spectrometry of the B. burgdorferi membrane-associated proteome confirmed the selective periplasmic retention of surface lipoproteins under BB0838 knockdown conditions. Additional analysis identified a single in situ protease-accessible BB0838 peptide that mapped to a predicted ß-barrel surface loop. Alphafold Multimer modeled a B. burgdorferi LptB2 FGCAD complex spanning the periplasm. Together, this suggests that BB0838/LptDBb facilitates the essential terminal step in spirochetal surface lipoprotein secretion, using an orthologous OM component of a pathway that secretes LPS in proteobacteria.


Asunto(s)
Borrelia burgdorferi , Borrelia burgdorferi/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Lipopolisacáridos/metabolismo , Bacterias/metabolismo , Lipoproteínas/metabolismo
3.
Elife ; 92020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33372657

RESUMEN

Changes in available nutrients are inevitable events for most living organisms. Upon nutritional stress, several signaling pathways cooperate to change the transcription program through chromatin regulation to rewire cellular metabolism. In budding yeast, histone H3 threonine 11 phosphorylation (H3pT11) acts as a marker of low glucose stress and regulates the transcription of nutritional stress-responsive genes. Understanding how this histone modification 'senses' external glucose changes remains elusive. Here, we show that Tda1, the yeast ortholog of human Nuak1, is a direct kinase for H3pT11 upon low glucose stress. Yeast AMP-activated protein kinase (AMPK) directly phosphorylates Tda1 to govern Tda1 activity, while CK2 regulates Tda1 nuclear localization. Collectively, AMPK and CK2 signaling converge on histone kinase Tda1 to link external low glucose stress to chromatin regulation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa de la Caseína II/metabolismo , Histonas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glucosa/metabolismo , Fosforilación , Proteínas de Transporte Vesicular
5.
Nat Cell Biol ; 22(5): 603-615, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32284543

RESUMEN

Merkel cell carcinoma (MCC)-a neuroendocrine cancer of the skin-is caused by the integration of Merkel cell polyomavirus and persistent expression of large T antigen and small T antigen. We report that small T antigen in complex with MYCL and the EP400 complex activates the expression of LSD1 (KDM1A), RCOR2 and INSM1 to repress gene expression by the lineage transcription factor ATOH1. LSD1 inhibition reduces the growth of MCC in vitro and in vivo. Through a forward-genetics CRISPR-Cas9 screen, we identified an antagonistic relationship between LSD1 and the non-canonical BAF (ncBAF) chromatin remodelling complex. Changes in gene expression and chromatin accessibility caused by LSD1 inhibition were partially rescued by BRD9 inhibition, revealing that LSD1 and ncBAF antagonistically regulate an overlapping set of genes. Our work provides mechanistic insight into the dependence of MCC on LSD1 and a tumour suppressor role for ncBAF in cancer.

6.
J Cell Biol ; 218(6): 1824-1838, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31088859

RESUMEN

Proper orientation of the mitotic spindle is essential for cell fate determination, tissue morphogenesis, and homeostasis. During epithelial proliferation, planar spindle alignment ensures the maintenance of polarized tissue architecture, and aberrant spindle orientation can disrupt epithelial integrity. Nevertheless, in vivo mechanisms that restrict the mitotic spindle to the plane of the epithelium remain poorly understood. Here we show that the junction-localized tumor suppressors Scribbled (Scrib) and Discs large (Dlg) control planar spindle orientation via Mud and 14-3-3 proteins in the Drosophila wing disc epithelium. During mitosis, Scrib is required for the junctional localization of Dlg, and both affect mitotic spindle movements. Using coimmunoprecipitation and mass spectrometry, we identify 14-3-3 proteins as Dlg-interacting partners and further report that loss of 14-3-3s causes both abnormal spindle orientation and disruption of epithelial architecture as a consequence of basal cell delamination and apoptosis. Combined, these biochemical and genetic analyses indicate that 14-3-3s function together with Scrib, Dlg, and Mud during planar cell division.


Asunto(s)
Proteínas 14-3-3/metabolismo , Polaridad Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Huso Acromático/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Alas de Animales/citología , Proteínas 14-3-3/genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Morfogénesis , Huso Acromático/genética , Proteínas Supresoras de Tumor/genética , Alas de Animales/metabolismo
7.
Cells ; 8(2)2019 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-30717447

RESUMEN

The primary envelopment/de-envelopment of Herpes viruses during nuclear exit is poorly understood. In Herpes simplex virus type-1 (HSV-1), proteins pUL31 and pUL34 are critical, while pUS3 and some others contribute; however, efficient membrane fusion may require additional host proteins. We postulated that vesicle fusion proteins present in the nuclear envelope might facilitate primary envelopment and/or de-envelopment fusion with the outer nuclear membrane. Indeed, a subpopulation of vesicle-associated membrane protein-associated protein B (VAPB), a known vesicle trafficking protein, was present in the nuclear membrane co-locating with pUL34. VAPB knockdown significantly reduced both cell-associated and supernatant virus titers. Moreover, VAPB depletion reduced cytoplasmic accumulation of virus particles and increased levels of nuclear encapsidated viral DNA. These results suggest that VAPB is an important player in the exit of primary enveloped HSV-1 virions from the nucleus. Importantly, VAPB knockdown did not alter pUL34, calnexin or GM-130 localization during infection, arguing against an indirect effect of VAPB on cellular vesicles and trafficking. Immunogold-labelling electron microscopy confirmed VAPB presence in nuclear membranes and moreover associated with primary enveloped HSV-1 particles. These data suggest that VAPB could be a cellular component of a complex that facilitates UL31/UL34/US3-mediated HSV-1 nuclear egress.


Asunto(s)
Núcleo Celular/metabolismo , Herpesvirus Humano 1/fisiología , Fusión de Membrana , Proteínas de Transporte Vesicular/metabolismo , Liberación del Virus/fisiología , Replicación Viral/fisiología , Animales , Núcleo Celular/ultraestructura , Chlorocebus aethiops , Células HeLa , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/ultraestructura , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Microsomas/metabolismo , Microsomas/ultraestructura , Membrana Nuclear/metabolismo , Células Vero , Proteínas Virales/metabolismo , Virión/metabolismo , Virión/ultraestructura
8.
J Cell Sci ; 132(2)2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30559249

RESUMEN

Metazoans contain two homologs of the Gcn5-binding protein Ada2, Ada2a and Ada2b, which nucleate formation of the ATAC and SAGA complexes, respectively. In Drosophila melanogaster, there are two splice isoforms of Ada2b: Ada2b-PA and Ada2b-PB. Here, we show that only the Ada2b-PB isoform is in SAGA; in contrast, Ada2b-PA associates with Gcn5, Ada3, Sgf29 and Chiffon, forming the Chiffon histone acetyltransferase (CHAT) complex. Chiffon is the Drosophila ortholog of Dbf4, which binds and activates the cell cycle kinase Cdc7 to initiate DNA replication. In flies, Chiffon and Cdc7 are required in ovary follicle cells for gene amplification, a specialized form of DNA re-replication. Although chiffon was previously reported to be dispensable for viability, here, we find that Chiffon is required for both histone acetylation and viability in flies. Surprisingly, we show that chiffon is a dicistronic gene that encodes distinct Cdc7- and CHAT-binding polypeptides. Although the Cdc7-binding domain of Chiffon is not required for viability in flies, the CHAT-binding domain is essential for viability, but is not required for gene amplification, arguing against a role in DNA replication.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas del Huevo/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Acetilación , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas del Huevo/genética , Histona Acetiltransferasas/genética , Histonas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
9.
Cell Rep ; 24(6): 1585-1596, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30089268

RESUMEN

Metabolic disorder has been suggested to underlie Alzheimer's disease (AD). However, the decisive molecular linkages remain unclear. We discovered that human Molybdopterin Synthase Associating Complex, MPTAC, promotes sulfur amino acid catabolism to prevent oxidative damage from excess sulfur amino acids, which, in turn, advances fatty acid oxidation and acetyl coenzyme A (acetyl-CoA) synthesis. The association of MPTAC with Protein arginine (R) Methyltransferase 5 (PRMT5) complex and small nuclear ribonucleoprotein (SNRP) splicing factors enables SNRPs to sense metabolic states through their methylation. This promotes the splicing fidelity of amyloid precursor protein (APP) pre-mRNA and proper APP fragmentation, abnormalities of which have been observed in the platelets of AD patients. The functions of MPTAC are crucial to maintain expression of drebrin 1, which is required for synaptic plasticity, through prevention from oxidative damage. Thus, adjustment of sulfur amino acid catabolism by MPTAC prevents events that occur early in the onset of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Aminoácidos Sulfúricos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Sulfurtransferasas/metabolismo , Células HEK293 , Humanos , Plasticidad Neuronal
10.
Nucleus ; 9(1): 410-430, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29912636

RESUMEN

Laminopathies yield tissue-specific pathologies, yet arise from mutation of ubiquitously-expressed genes. A little investigated hypothesis to explain this is that the mutated proteins or their partners have tissue-specific splice variants. To test this, we analyzed RNA-Seq datasets, finding novel isoforms or isoform tissue-specificity for: Lap2, linked to cardiomyopathy; Nesprin 2, linked to Emery-Dreifuss muscular dystrophy and Lmo7, that regulates the Emery-Dreifuss muscular dystrophy linked emerin gene. Interestingly, the muscle-specific Lmo7 exon is rich in serine phosphorylation motifs, suggesting regulatory function. Muscle-specific splice variants in non-nuclear envelope proteins linked to other muscular dystrophies were also found. Nucleoporins tissue-specific variants were found for Nup54, Nup133, Nup153 and Nup358/RanBP2. RT-PCR confirmed novel Lmo7 and RanBP2 variants and specific knockdown of the Lmo7 variantreduced myogenic index. Nuclear envelope proteins were enriched for tissue-specific splice variants compared to the rest of the genome, suggesting that splice variants contribute to its tissue-specific functions.


Asunto(s)
Empalme Alternativo/genética , Bases de Datos de Ácidos Nucleicos , Conjuntos de Datos como Asunto , Músculo Esquelético/metabolismo , Membrana Nuclear/genética , Proteínas Nucleares/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Animales , Células Cultivadas , Ratones , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Especificidad de Órganos/genética
11.
PLoS Pathog ; 13(10): e1006668, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29028833

RESUMEN

Merkel cell carcinoma (MCC) frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT) and an intact Small T antigen (ST). While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC) and recruits it to the 15-component EP400 histone acetyltransferase and chromatin remodeling complex. We performed a large-scale immunoprecipitation for ST and identified co-precipitating proteins by mass spectrometry. In addition to protein phosphatase 2A (PP2A) subunits, we identified MYCL and its heterodimeric partner MAX plus the EP400 complex. Immunoprecipitation for MAX and EP400 complex components confirmed their association with ST. We determined that the ST-MYCL-EP400 complex binds together to specific gene promoters and activates their expression by integrating chromatin immunoprecipitation with sequencing (ChIP-seq) and RNA-seq. MYCL and EP400 were required for maintenance of cell viability and cooperated with ST to promote gene expression in MCC cell lines. A genome-wide CRISPR-Cas9 screen confirmed the requirement for MYCL and EP400 in MCPyV-positive MCC cell lines. We demonstrate that ST can activate gene expression in a EP400 and MYCL dependent manner and this activity contributes to cellular transformation and generation of induced pluripotent stem cells.


Asunto(s)
Antígenos Virales de Tumores/metabolismo , Carcinoma de Células de Merkel/virología , Transformación Celular Viral/fisiología , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Antígenos Transformadores de Poliomavirus/metabolismo , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/metabolismo , Línea Celular Tumoral , Humanos , Immunoblotting , Inmunoprecipitación , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus/complicaciones , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/metabolismo , Infecciones Tumorales por Virus/complicaciones , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/metabolismo
12.
Elife ; 62017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718761

RESUMEN

In human cells, cytoplasmic dynein-1 is essential for long-distance transport of many cargos, including organelles, RNAs, proteins, and viruses, towards microtubule minus ends. To understand how a single motor achieves cargo specificity, we identified the human dynein interactome by attaching a promiscuous biotin ligase ('BioID') to seven components of the dynein machinery, including a subunit of the essential cofactor dynactin. This method reported spatial information about the large cytosolic dynein/dynactin complex in living cells. To achieve maximal motile activity and to bind its cargos, human dynein/dynactin requires 'activators', of which only five have been described. We developed methods to identify new activators in our BioID data, and discovered that ninein and ninein-like are a new family of dynein activators. Analysis of the protein interactomes for six activators, including ninein and ninein-like, suggests that each dynein activator has multiple cargos.


Asunto(s)
Proteínas Portadoras/metabolismo , Movimiento Celular , Dineínas Citoplasmáticas/metabolismo , Complejo Dinactina/metabolismo , Línea Celular , Técnicas Citológicas/métodos , Humanos , Microtúbulos/metabolismo , Coloración y Etiquetado/métodos
13.
J Bacteriol ; 199(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28069820

RESUMEN

The Lyme disease spirochete Borrelia burgdorferi is unique among bacteria in its large number of lipoproteins that are encoded by a small, exceptionally fragmented, and predominantly linear genome. Peripherally anchored in either the inner or outer membrane and facing either the periplasm or the external environment, these lipoproteins assume varied roles. A prominent subset of lipoproteins functioning as the apparent linchpins of the enzootic tick-vertebrate infection cycle have been explored as vaccine targets. Yet, most of the B. burgdorferi lipoproteome has remained uncharacterized. Here, we comprehensively and conclusively localize the B. burgdorferi lipoproteome by applying established protein localization assays to a newly generated epitope-tagged lipoprotein expression library and by validating the obtained individual protein localization results using a sensitive global mass spectrometry approach. The derived consensus localization data indicate that 86 of the 125 analyzed lipoproteins encoded by B. burgdorferi are secreted to the bacterial surface. Thirty-one of the remaining 39 periplasmic lipoproteins are retained in the inner membrane, with only 8 lipoproteins being anchored in the periplasmic leaflet of the outer membrane. The localization of 10 lipoproteins was further defined or revised, and 52 surface and 23 periplasmic lipoproteins were newly localized. Cross-referencing prior studies revealed that the borrelial surface lipoproteome contributing to the host-pathogen interface is encoded predominantly by plasmids. Conversely, periplasmic lipoproteins are encoded mainly by chromosomal loci. These studies close a gap in our understanding of the functional lipoproteome of an important human pathogen and set the stage for more in-depth studies of thus-far-neglected spirochetal lipoproteins.IMPORTANCE The small and exceptionally fragmented genome of the Lyme disease spirochete Borrelia burgdorferi encodes over 120 lipoproteins. Studies in the field have predominantly focused on a relatively small number of surface lipoproteins that play important roles in the transmission and pathogenesis of this global human pathogen. Yet, a comprehensive spatial assessment of the entire borrelial lipoproteome has been missing. The current study newly identifies 52 surface and 23 periplasmic lipoproteins. Overall, two-thirds of the B. burgdorferi lipoproteins localize to the surface, while outer membrane lipoproteins facing the periplasm are rare. This analysis underscores the dominant contribution of lipoproteins to the spirochete's rather complex and adaptable host-pathogen interface, and it encourages further functional exploration of its lipoproteome.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/genética , Borrelia burgdorferi/genética , Epítopos , Escherichia coli/metabolismo , Biblioteca de Genes , Lipoproteínas/genética , Espectrometría de Masas , Proteínas de la Membrana/genética , Transporte de Proteínas
14.
PLoS One ; 11(12): e0167535, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27907191

RESUMEN

Synaptic vesicles (SVs) fuse with the plasma membrane at a precise location called the presynaptic active zone (AZ). This fusion is coordinated by proteins embedded within a cytoskeletal matrix assembled at the AZ (CAZ). In the present study, we have identified a novel binding partner for the CAZ proteins Piccolo and Bassoon. This interacting protein, Trio, is a member of the Dbl family of guanine nucleotide exchange factors (GEFs) known to regulate the dynamic assembly of actin and growth factor dependent axon guidance and synaptic growth. Trio was found to interact with the C-terminal PBH 9/10 domains of Piccolo and Bassoon via its own N-terminal Spectrin repeats, a domain that is also critical for its localization to the CAZ. Moreover, our data suggest that regions within the C-terminus of Trio negatively regulate its interactions with Piccolo/Bassoon. These findings provide a mechanism for the presynaptic targeting of Trio and support a model in which Piccolo and Bassoon play a role in regulating neurotransmission through interactions with proteins, including Trio, that modulate the dynamic assembly of F-actin during cycles of synaptic vesicle exo- and endocytosis.


Asunto(s)
Proteínas del Citoesqueleto/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuropéptidos/genética , Terminales Presinápticos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transmisión Sináptica/genética , Actinas/genética , Actinas/metabolismo , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Proteínas del Citoesqueleto/metabolismo , Embrión de Mamíferos , Endocitosis , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , Neuropéptidos/metabolismo , Terminales Presinápticos/ultraestructura , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura
15.
Mol Cell Biol ; 36(22): 2855-2866, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27601583

RESUMEN

The SAGA complex contains two enzymatic modules, which house histone acetyltransferase (HAT) and deubiquitinase (DUB) activities. USP22 is the catalytic subunit of the DUB module, but two adaptor proteins, ATXN7L3 and ENY2, are necessary for DUB activity toward histone H2Bub1 and other substrates. ATXN7L3B shares 74% identity with the N-terminal region of ATXN7L3, but the functions of ATXN7L3B are not known. Here we report that ATXN7L3B interacts with ENY2 but not other SAGA components. Even though ATXN7L3B localizes in the cytoplasm, ATXN7L3B overexpression increases H2Bub1 levels, while overexpression of ATXN7L3 decreases H2Bub1 levels. In vitro, ATXN7L3B competes with ATXN7L3 to bind ENY2, and in vivo, knockdown of ATXN7L3B leads to concomitant loss of ENY2. Unlike the ATXN7L3 DUB complex, a USP22-ATXN7L3B-ENY2 complex cannot deubiquitinate H2Bub1 efficiently in vitro Moreover, ATXN7L3B knockdown inhibits migration of breast cancer cells in vitro and limits expression of ER target genes. Collectively, our studies suggest that ATXN7L3B regulates H2Bub1 levels and SAGA DUB activity through competition for ENY2 binding.


Asunto(s)
Neoplasias de la Mama/metabolismo , Citoplasma/metabolismo , Histonas/metabolismo , Tioléster Hidrolasas/metabolismo , Factores de Transcripción/metabolismo , Movimiento Celular , Núcleo Celular/enzimología , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Células MCF-7 , Factores de Transcripción/genética , Ubiquitina Tiolesterasa , Regulación hacia Arriba
16.
Proc Natl Acad Sci U S A ; 113(27): E3921-30, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27335459

RESUMEN

HIV replication in nondividing host cells occurs in the presence of high concentrations of noncanonical dUTP, apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) cytidine deaminases, and SAMHD1 (a cell cycle-regulated dNTP triphosphohydrolase) dNTPase, which maintains low concentrations of canonical dNTPs in these cells. These conditions favor the introduction of marks of DNA damage into viral cDNA, and thereby prime it for processing by DNA repair enzymes. Accessory protein Vpr, found in all primate lentiviruses, and its HIV-2/simian immunodeficiency virus (SIV) SIVsm paralogue Vpx, hijack the CRL4(DCAF1) E3 ubiquitin ligase to alleviate some of these conditions, but the extent of their interactions with DNA repair proteins has not been thoroughly characterized. Here, we identify HLTF, a postreplication DNA repair helicase, as a common target of HIV-1/SIVcpz Vpr proteins. We show that HIV-1 Vpr reprograms CRL4(DCAF1) E3 to direct HLTF for proteasome-dependent degradation independent from previously reported Vpr interactions with base excision repair enzyme uracil DNA glycosylase (UNG2) and crossover junction endonuclease MUS81, which Vpr also directs for degradation via CRL4(DCAF1) E3. Thus, separate functions of HIV-1 Vpr usurp CRL4(DCAF1) E3 to remove key enzymes in three DNA repair pathways. In contrast, we find that HIV-2 Vpr is unable to efficiently program HLTF or UNG2 for degradation. Our findings reveal complex interactions between HIV-1 and the DNA repair machinery, suggesting that DNA repair plays important roles in the HIV-1 life cycle. The divergent interactions of HIV-1 and HIV-2 with DNA repair enzymes and SAMHD1 imply that these viruses use different strategies to guard their genomes and facilitate their replication in the host.


Asunto(s)
ADN Glicosilasas/metabolismo , Proteínas de Unión al ADN/metabolismo , VIH-1/fisiología , VIH-2/fisiología , Factores de Transcripción/metabolismo , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Ciclo Celular , ADN Helicasas/metabolismo , Endonucleasas/metabolismo , Células HEK293 , Humanos , Datos de Secuencia Molecular , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteómica , Proteína 1 que Contiene Dominios SAM y HD , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
17.
Genes Dev ; 30(10): 1198-210, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27198229

RESUMEN

KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and are involved in cell cycle regulation. However, information regarding their roles in regulating cell cycle progression is limited. Here, we report the identification of subunits of the Drosophila Enok complex and demonstrate that all subunits are important for its HAT activity. We further report a novel interaction between the Enok complex and the Elg1 proliferating cell nuclear antigen (PCNA)-unloader complex. Depletion of Enok in S2 cells resulted in a G1/S cell cycle block, and this block can be partially relieved by depleting Elg1. Furthermore, depletion of Enok reduced the chromatin-bound levels of PCNA in both S2 cells and early embryos, suggesting that the Enok complex may interact with the Elg1 complex and down-regulate its PCNA-unloading function to promote the G1/S transition. Supporting this hypothesis, depletion of Enok also partially rescued the endoreplication defects in Elg1-depleted nurse cells. Taken together, our study provides novel insights into the roles of KAT6 HATs in cell cycle regulation through modulating PCNA levels on chromatin.


Asunto(s)
Proteínas de Drosophila/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Histona Acetiltransferasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Animales , Puntos de Control del Ciclo Celular/genética , Células Cultivadas , Cromatina/metabolismo , Regulación hacia Abajo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Histona Acetiltransferasas/genética , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
18.
J Mol Biol ; 428(18): 3632-49, 2016 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-27185460

RESUMEN

The interaction between splicing factors and the transcriptional machinery provides an intriguing link between the coupled processes of transcription and splicing. Here, we show that the two components of the SF3B complex, SF3B3 and SF3B5, that form part of the U2 small nuclear ribonucleoprotein particle (snRNP) are also subunits of the Spt-Ada-Gcn5 acetyltransferase (SAGA) transcriptional coactivator complex in Drosophila melanogaster. Whereas SF3B3 had previously been identified as a human SAGA subunit, SF3B5 had not been identified as a component of SAGA in any species. We show that SF3B3 and SF3B5 bind to SAGA independent of RNA and interact with multiple SAGA subunits including Sgf29 and Spt7 in a yeast two-hybrid assay. Through analysis of sf3b5 mutant flies, we show that SF3B5 is necessary for proper development and cell viability but not for histone acetylation. Although SF3B5 does not appear to function in SAGA's histone-modifying activities, SF3B5 is still required for expression of a subset of SAGA-regulated genes independent of splicing. Thus, our data support an independent function of SF3B5 in SAGA's transcription coactivator activity that is separate from its role in splicing.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Expresión Génica , Empalmosomas/metabolismo , Transcripción Genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Unión Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Técnicas del Sistema de Dos Híbridos
19.
J Mol Cell Biol ; 8(1): 44-50, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26705305

RESUMEN

Molybdenum cofactor (Moco) biosynthesis is linked to c-Jun N-terminal kinase (JNK) signaling in Drosophila through MoaE, a molybdopterin (MPT) synthase subunit that is also a component of the Ada Two A containing (ATAC) acetyltransferase complex. Here, we show that human MPT synthase and ATAC inhibited PKR, a double-stranded RNA-dependent protein kinase, to facilitate translation initiation of iron-responsive mRNA. MPT synthase and ATAC directly interacted with PKR and suppressed latent autophosphorylation of PKR and its downstream phosphorylation of JNK and eukaryotic initiation factor 2α (eIF2α). The suppression of eIF2α phosphorylation via MPT synthase and ATAC prevented sequestration of the guanine nucleotide exchange factor eIF2B, which recycles eIF2-GDP to eIF2-GTP, resulting in the promotion of translation initiation. Indeed, translation of the iron storage protein, ferritin, was reduced in the absence of MPT synthase or ATAC subunits. Thus, MPT synthase and ATAC regulate latent PKR signaling and link transcription and translation initiation.


Asunto(s)
Acetiltransferasas/metabolismo , Coenzimas/biosíntesis , Metaloproteínas/biosíntesis , eIF-2 Quinasa/metabolismo , Animales , Línea Celular , Factor 2 Eucariótico de Iniciación/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Cofactores de Molibdeno , Fosforilación , Biosíntesis de Proteínas , Pteridinas , Sulfurtransferasas/metabolismo
20.
Mol Cell ; 60(3): 408-21, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26527276

RESUMEN

Pyruvate kinase M2 (PKM2) is a key enzyme for glycolysis and catalyzes the conversion of phosphoenolpyruvate (PEP) to pyruvate, which supplies cellular energy. PKM2 also phosphorylates histone H3 threonine 11 (H3T11); however, it is largely unknown how PKM2 links cellular metabolism to chromatin regulation. Here, we show that the yeast PKM2 homolog, Pyk1, is a part of a novel protein complex named SESAME (Serine-responsive SAM-containing Metabolic Enzyme complex), which contains serine metabolic enzymes, SAM (S-adenosylmethionine) synthetases, and an acetyl-CoA synthetase. SESAME interacts with the Set1 H3K4 methyltransferase complex, which requires SAM synthesized from SESAME, and recruits SESAME to target genes, resulting in phosphorylation of H3T11. SESAME regulates the crosstalk between H3K4 methylation and H3T11 phosphorylation by sensing glycolysis and glucose-derived serine metabolism. This leads to auto-regulation of PYK1 expression. Thus, our study provides insights into the mechanism of regulating gene expression, responding to cellular metabolism via chromatin modifications.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Histonas/genética , Complejos Multiproteicos/genética , Fosforilación/fisiología , Proteínas Tirosina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...