Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 9(2): 253-269, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36637435

RESUMEN

Eeyarestatin 24 (ES24) is a promising new antibiotic with broad-spectrum activity. It shares structural similarity with nitrofurantoin (NFT), yet appears to have a distinct and novel mechanism: ES24 was found to inhibit SecYEG-mediated protein transport and membrane insertion in Gram-negative bacteria. However, possible additional targets have not yet been explored. Moreover, its activity was notably better against Gram-positive bacteria, for which its mechanism of action had not yet been investigated. We have used transcriptomic stress response profiling, phenotypic assays, and protein secretion analyses to investigate the mode of action of ES24 in comparison with NFT using the Gram-positive model bacterium Bacillus subtilis and have compared our findings to Gram-negative Escherichia coli. Here, we show the inhibition of Sec-dependent protein secretion in B. subtilis and additionally provide evidence for DNA damage, probably caused by the generation of reactive derivatives of ES24. Interestingly, ES24 caused a gradual dissipation of the membrane potential, which led to delocalization of cytokinetic proteins and subsequent cell elongation in E. coli. However, none of those effects were observed in B. subtilis, thereby suggesting that ES24 displays distinct mechanistic differences with respect to Gram-positive and Gram-negative bacteria. Despite its structural similarity to NFT, ES24 profoundly differed in our phenotypic analysis, which implies that it does not share the NFT mechanism of generalized macromolecule and structural damage. Importantly, ES24 outperformed NFT in vivo in a zebrafish embryo pneumococcal infection model. Our results suggest that ES24 not only inhibits the Sec translocon, but also targets bacterial DNA and, in Gram-negative bacteria, the cell membrane.


Asunto(s)
Antibacterianos , Escherichia coli , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , ADN Bacteriano , Antibacterianos/farmacología , Antibacterianos/metabolismo , Pez Cebra , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas , Transporte de Proteínas
2.
iScience ; 25(3): 103973, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35281739

RESUMEN

Myocardial inflammation contributes to cardiomyopathy in diabetic patients through incompletely defined underlying mechanisms. In both human and time-course experimental samples, diabetic hearts exhibited abnormal ER, with a maladaptive shift over time in rodents. Furthermore, as a cardiac ER dysfunction model, mice with cardiac-specific p21-activated kinase 2 (PAK2) deletion exhibited heightened myocardial inflammatory response in diabetes. Mechanistically, maladaptive ER stress-induced CCAAT/enhancer-binding protein homologous protein (CHOP) is a novel transcriptional regulator of cardiac high-mobility group box-1 (HMGB1). Cardiac stress-induced release of HMGB1 facilitates M1 macrophage polarization, aggravating myocardial inflammation. Therapeutically, sequestering the extracellular HMGB1 using glycyrrhizin conferred cardioprotection through its anti-inflammatory action. Our findings also indicated that an intact cardiac ER function and protective effects of the antidiabetic drug interdependently attenuated the cardiac inflammation-induced dysfunction. Collectively, we introduce an ER stress-mediated cardiomyocyte-macrophage link, altering the macrophage response, thereby providing insight into therapeutic prospects for diabetes-associated cardiac dysfunction.

3.
Mol Microbiol ; 115(1): 28-40, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32798330

RESUMEN

Eeyarestatin 1 (ES1) is an inhibitor of endoplasmic reticulum (ER) associated protein degradation, Sec61-dependent Ca2+ homeostasis and protein translocation into the ER. Recently, evidence was presented showing that a smaller analog of ES1, ES24, targets the Sec61-translocon, and captures it in an open conformation that is translocation-incompetent. We now show that ES24 impairs protein secretion and membrane protein insertion in Escherichia coli via the homologous SecYEG-translocon. Transcriptomic analysis suggested that ES24 has a complex mode of action, probably involving multiple targets. Interestingly, ES24 shows antibacterial activity toward clinically relevant strains. Furthermore, the antibacterial activity of ES24 is equivalent to or better than that of nitrofurantoin, a known antibiotic that, although structurally similar to ES24, does not interfere with SecYEG-dependent protein trafficking. Like nitrofurantoin, we find that ES24 requires activation by the NfsA and NfsB nitroreductases, suggesting that the formation of highly reactive nitroso intermediates is essential for target inactivation in vivo.


Asunto(s)
Hidrazonas/farmacología , Hidroxiurea/análogos & derivados , Canales de Translocación SEC/metabolismo , Antibacterianos/metabolismo , Retículo Endoplásmico/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrazonas/química , Hidroxiurea/química , Hidroxiurea/farmacología , Proteínas de la Membrana/metabolismo , Nitrorreductasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Canales de Translocación SEC/efectos de los fármacos
4.
Cell Chem Biol ; 26(4): 571-583.e6, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30799222

RESUMEN

Eeyarestatin 1 (ES1) inhibits p97-dependent protein degradation, Sec61-dependent protein translocation into the endoplasmic reticulum (ER), and vesicular transport within the endomembrane system. Here, we show that ES1 impairs Ca2+ homeostasis by enhancing the Ca2+ leakage from mammalian ER. A comparison of various ES1 analogs suggested that the 5-nitrofuran (5-NF) ring of ES1 is crucial for this effect. Accordingly, the analog ES24, which conserves the 5-NF domain of ES1, selectively inhibited protein translocation into the ER, displayed the highest potency on ER Ca2+ leakage of ES1 analogs studied and induced Ca2+-dependent cell death. Using small interfering RNA-mediated knockdown of Sec61α, we identified Sec61 complexes as the targets that mediate the gain of Ca2+ leakage induced by ES1 and ES24. By interacting with the lateral gate of Sec61α, ES1 and ES24 likely capture Sec61 complexes in a Ca2+-permeable, open state, in which Sec61 complexes allow Ca2+ leakage but are translocation incompetent.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Hidrazonas/farmacología , Hidroxiurea/análogos & derivados , Canales de Translocación SEC/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Hidroxiurea/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos
5.
Circ Res ; 124(5): 696-711, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30620686

RESUMEN

RATIONALE: Secreted and membrane-bound proteins, which account for 1/3 of all proteins, play critical roles in heart health and disease. The endoplasmic reticulum (ER) is the site for synthesis, folding, and quality control of these proteins. Loss of ER homeostasis and function underlies the pathogenesis of many forms of heart disease. OBJECTIVE: To investigate mechanisms responsible for regulating cardiac ER function, and to explore therapeutic potentials of strengthening ER function to treat heart disease. METHODS AND RESULTS: Screening a range of signaling molecules led to the discovery that Pak (p21-activated kinase)2 is a stress-responsive kinase localized in close proximity to the ER membrane in cardiomyocytes. We found that Pak2 cardiac deleted mice (Pak2-CKO) under tunicamycin stress or pressure overload manifested a defective ER response, cardiac dysfunction, and profound cell death. Small chemical chaperone tauroursodeoxycholic acid treatment of Pak2-CKO mice substantiated that Pak2 loss-induced cardiac damage is an ER-dependent pathology. Gene array analysis prompted a detailed mechanistic study, which revealed that Pak2 regulation of protective ER function was via the IRE (inositol-requiring enzyme)-1/XBP (X-box-binding protein)-1-dependent pathway. We further discovered that this regulation was conferred by Pak2 inhibition of PP2A (protein phosphatase 2A) activity. Moreover, IRE-1 activator, Quercetin, and adeno-associated virus serotype-9-delivered XBP-1s were able to relieve ER dysfunction in Pak2-CKO hearts. This provides functional evidence, which supports the mechanism underlying Pak2 regulation of IRE-1/XBP-1s signaling. Therapeutically, inducing Pak2 activation by genetic overexpression or adeno-associated virus serotype-9-based gene delivery was capable of strengthening ER function, improving cardiac performance, and diminishing apoptosis, thus protecting the heart from failure. CONCLUSIONS: Our findings uncover a new cardioprotective mechanism, which promotes a protective ER stress response via the modulation of Pak2. This novel therapeutic strategy may present as a promising option for treating cardiac disease and heart failure.


Asunto(s)
Estrés del Retículo Endoplásmico , Insuficiencia Cardíaca/enzimología , Miocitos Cardíacos/enzimología , Quinasas p21 Activadas/metabolismo , Animales , Apoptosis , Línea Celular , Modelos Animales de Enfermedad , Terapia Genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/terapia , Células Madre Pluripotentes Inducidas/enzimología , Macaca mulatta , Masculino , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Miocitos Cardíacos/patología , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Transducción de Señal , Proteína 1 de Unión a la X-Box/metabolismo , Quinasas p21 Activadas/deficiencia , Quinasas p21 Activadas/genética
6.
J Clin Invest ; 127(10): 3861-3865, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28920921

RESUMEN

The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress-associated dwarfism MCDS.


Asunto(s)
Carbamazepina/farmacología , Condrocitos/metabolismo , Colágeno Tipo X/biosíntesis , Enanismo/metabolismo , Estrés del Retículo Endoplásmico , Mutación , Proteolisis , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Condrocitos/patología , Colágeno Tipo X/genética , Enanismo/genética , Enanismo/patología , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Ratones
7.
PLoS One ; 12(4): e0173924, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28384259

RESUMEN

Multiple protein quality control systems operate to ensure that misfolded proteins are efficiently cleared from the cell. While quality control systems that assess the folding status of soluble domains have been extensively studied, transmembrane domain (TMD) quality control mechanisms are poorly understood. Here, we have used chimeras based on the type I plasma membrane protein CD8 in which the endogenous TMD was substituted with transmembrane sequences derived from different polytopic membrane proteins as a mode to investigate the quality control of unassembled TMDs along the secretory pathway. We find that the three TMDs examined prevent trafficking of CD8 to the cell surface via potentially distinct mechanisms. CD8 containing two distinct non-native transmembrane sequences escape the ER and are subsequently retrieved from the Golgi, possibly via Rer1, leading to ER localisation at steady state. A third chimera, containing an altered transmembrane domain, was predominantly localised to the Golgi at steady state, indicating the existence of an additional quality control checkpoint that identifies non-native transmembrane domains that have escaped ER retention and retrieval. Preliminary experiments indicate that protein retained by quality control mechanisms at the Golgi are targeted to lysosomes for degradation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Control de Calidad , Animales
8.
Dis Model Mech ; 9(11): 1317-1328, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27519691

RESUMEN

Autosomal recessive bestrophinopathy (ARB) is a retinopathy caused by mutations in the bestrophin-1 protein, which is thought to function as a Ca2+-gated Cl- channel in the basolateral surface of the retinal pigment epithelium (RPE). Using a stably transfected polarised epithelial cell model, we show that four ARB mutant bestrophin-1 proteins were mislocalised and subjected to proteasomal degradation. In contrast to the wild-type bestrophin-1, each of the four mutant proteins also failed to conduct Cl- ions in transiently transfected cells as determined by whole-cell patch clamp. We demonstrate that a combination of two clinically approved drugs, bortezomib and 4-phenylbutyrate (4PBA), successfully restored the expression and localisation of all four ARB mutant bestrophin-1 proteins. Importantly, the Cl- conductance function of each of the mutant bestrophin-1 proteins was fully restored to that of wild-type bestrophin-1 by treatment of cells with 4PBA alone. The functional rescue achieved with 4PBA is significant because it suggests that this drug, which is already approved for long-term use in infants and adults, might represent a promising therapy for the treatment of ARB and other bestrophinopathies resulting from missense mutations in BEST1.


Asunto(s)
Bestrofinas/genética , Bestrofinas/metabolismo , Polaridad Celular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteínas Mutantes/metabolismo , Animales , Biotinilación , Polaridad Celular/efectos de los fármacos , Perros , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células Epiteliales/efectos de los fármacos , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/patología , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Modelos Biológicos , Mutación/genética , Técnicas de Placa-Clamp , Fenilbutiratos/farmacología , Transporte de Proteínas/efectos de los fármacos , Enfermedades de la Retina/genética , Enfermedades de la Retina/patología , Bibliotecas de Moléculas Pequeñas/farmacología , Transfección
9.
J Cell Sci ; 128(22): 4112-25, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26446255

RESUMEN

Clearance of misfolded proteins from the endoplasmic reticulum (ER) is mediated by the ubiquitin-proteasome system in a process known as ER-associated degradation (ERAD). The mechanisms through which proteins containing aberrant transmembrane domains are degraded by ERAD are poorly understood. To address this question, we generated model ERAD substrates based on CD8 with either a non-native transmembrane domain but a folded ER luminal domain (CD8(TMD*)), or the native transmembrane domain but a misfolded luminal domain (CD8(LUM*)). Although both chimeras were degraded by ERAD, we found that the location of the folding defect determined the initial site of ubiquitylation. Ubiquitylation of cytoplasmic lysine residues was required for the extraction of CD8(TMD*) from the ER membrane during ERAD, whereas CD8(LUM*) continued to be degraded in the absence of cytoplasmic lysine residues. Cytoplasmic lysine residues were also required for degradation of an additional ERAD substrate containing an unassembled transmembrane domain and when a non-native transmembrane domain was introduced into CD8(LUM*). Our results suggest that proteins with defective transmembrane domains are removed from the ER through a specific ERAD mechanism that depends upon ubiquitylation of cytoplasmic lysine residues.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Lisina/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Antígenos CD8/metabolismo , Células HeLa , Humanos , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Terciaria de Proteína , Ubiquitinación
10.
J Biol Chem ; 290(41): 24760-71, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26294767

RESUMEN

Evidence suggests that the plasma membrane Ca(2+)-ATPase (PMCA), which is critical for maintaining a low intracellular Ca(2+) concentration ([Ca(2+)]i), utilizes glycolytically derived ATP in pancreatic ductal adenocarcinoma (PDAC) and that inhibition of glycolysis in PDAC cell lines results in ATP depletion, PMCA inhibition, and an irreversible [Ca(2+)]i overload. We explored whether this is a specific weakness of highly glycolytic PDAC by shifting PDAC cell (MIA PaCa-2 and PANC-1) metabolism from a highly glycolytic phenotype toward mitochondrial metabolism and assessing the effects of mitochondrial versus glycolytic inhibitors on ATP depletion, PMCA inhibition, and [Ca(2+)]i overload. The highly glycolytic phenotype of these cells was first reversed by depriving MIA PaCa-2 and PANC-1 cells of glucose and supplementing with α-ketoisocaproate or galactose. These culture conditions resulted in a significant decrease in both glycolytic flux and proliferation rate, and conferred resistance to ATP depletion by glycolytic inhibition while sensitizing cells to mitochondrial inhibition. Moreover, in direct contrast to cells exhibiting a high glycolytic rate, glycolytic inhibition had no effect on PMCA activity and resting [Ca(2+)]i in α-ketoisocaproate- and galactose-cultured cells, suggesting that the glycolytic dependence of the PMCA is a specific vulnerability of PDAC cells exhibiting the Warburg phenotype.


Asunto(s)
Adenosina Trifosfato/metabolismo , Membrana Celular/enzimología , Glucólisis , Neoplasias Pancreáticas/patología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Adenocarcinoma/patología , Calcio/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Inhibidores Enzimáticos/farmacología , Galactosa/farmacología , Glucólisis/efectos de los fármacos , Humanos , Ácido Yodoacético/farmacología , Cetoácidos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores
11.
PLoS One ; 9(10): e108839, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25286379

RESUMEN

Inhibitors of the catalytic activity of the 20S proteasome are cytotoxic to tumor cells and are currently in clinical use for treatment of multiple myeloma, whilst the deubiquitinase activity associated with the 19S regulatory subunit of the proteasome is also a valid target for anti-cancer drugs. The mechanisms underlying the therapeutic efficacy of these drugs and their selective toxicity towards cancer cells are not known. Here, we show that increasing the cellular levels of proteasome substrates using an inhibitor of Sec61-mediated protein translocation significantly increases the extent of apoptosis that is induced by inhibition of proteasomal deubiquitinase activity in both cancer derived and non-transformed cell lines. Our results suggest that increased generation of misfolded proteasome substrates may contribute to the mechanism(s) underlying the increased sensitivity of tumor cells to inhibitors of the ubiquitin-proteasome system.


Asunto(s)
Apoptosis , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Cisteína/metabolismo , Cisteína/farmacología , Citoprotección/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células HCT116 , Células HeLa , Humanos , Peso Molecular , Piperidonas/farmacología , Poliubiquitina/metabolismo , Inhibidores de Proteasoma/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Saposinas/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Proteasas Ubiquitina-Específicas/metabolismo
12.
J Biol Chem ; 288(4): 2721-33, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23209292

RESUMEN

IL-1ß is a potent pro-inflammatory cytokine produced in response to infection or injury. It is synthesized as an inactive precursor that is activated by the protease caspase-1 within a cytosolic molecular complex called the inflammasome. Assembly of this complex is triggered by a range of structurally diverse damage or pathogen associated stimuli, and the signaling pathways through which these act are poorly understood. Ubiquitination is a post-translational modification essential for maintaining cellular homeostasis. It can be reversed by deubiquitinase enzymes (DUBs) that remove ubiquitin moieties from the protein thus modifying its fate. DUBs present specificity toward different ubiquitin chain topologies and are crucial for recycling ubiquitin molecules before protein degradation as well as regulating key cellular processes such as protein trafficking, gene transcription, and signaling. We report here that small molecule inhibitors of DUB activity inhibit inflammasome activation. Inhibition of DUBs blocked the processing and release of IL-1ß in both mouse and human macrophages. DUB activity was necessary for inflammasome association as DUB inhibition also impaired ASC oligomerization and caspase-1 activation without directly blocking caspase-1 activity. These data reveal the requirement for DUB activity in a key reaction of the innate immune response and highlight the therapeutic potential of DUB inhibitors for chronic auto-inflammatory diseases.


Asunto(s)
Caspasa 1/metabolismo , Endopeptidasas/fisiología , Interleucina-1beta/metabolismo , Animales , Carboxipeptidasas/metabolismo , Endopeptidasas/química , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Hidrazonas/farmacología , Hidroxiurea/análogos & derivados , Hidroxiurea/farmacología , Inmunidad Innata , Inflamación , Interleucina-1alfa/metabolismo , Interleucinas/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Ubiquitina Tiolesterasa
13.
Biochem J ; 442(3): 639-48, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22145777

RESUMEN

Selective small-molecule inhibitors represent powerful tools for the dissection of complex biological processes. ES(I) (eeyarestatin I) is a novel modulator of ER (endoplasmic reticulum) function. In the present study, we show that in addition to acutely inhibiting ERAD (ER-associated degradation), ES(I) causes production of mislocalized polypeptides that are ubiquitinated and degraded. Unexpectedly, our results suggest that these non-translocated polypeptides promote activation of the UPR (unfolded protein response), and indeed we can recapitulate UPR activation with an alternative and quite distinct inhibitor of ER translocation. These results suggest that the accumulation of non-translocated proteins in the cytosol may represent a novel mechanism that contributes to UPR activation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Transporte de Proteínas , Respuesta de Proteína Desplegada/fisiología , Citosol/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Hidrazonas/metabolismo , Hidroxiurea/análogos & derivados , Hidroxiurea/metabolismo , Péptidos/química , Péptidos/metabolismo , Pliegue de Proteína , Transfección , Ubiquitina/metabolismo
14.
PLoS One ; 6(7): e22713, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21799938

RESUMEN

BACKGROUND: The small molecule Eeyarestatin I (ESI) inhibits the endoplasmic reticulum (ER)-cytosol dislocation and subsequent degradation of ERAD (ER associated protein degradation) substrates. Toxins such as ricin and Shiga/Shiga-like toxins (SLTx) are endocytosed and trafficked to the ER. Their catalytic subunits are thought to utilise ERAD-like mechanisms to dislocate from the ER into the cytosol, where a proportion uncouples from the ERAD process, recovers a catalytic conformation and destroys their cellular targets. We therefore investigated ESI as a potential inhibitor of toxin dislocation. METHODOLOGY AND PRINCIPAL FINDINGS: Using cytotoxicity measurements, we found no role for ES(I) as an inhibitor of toxin dislocation from the ER, but instead found that for SLTx, ESI treatment of cells was protective by reducing the rate of toxin delivery to the ER. Microscopy of the trafficking of labelled SLTx and its B chain (lacking the toxic A chain) showed a delay in its accumulation at a peri-nuclear location, confirmed to be the Golgi by examination of SLTx B chain metabolically labelled in the trans-Golgi cisternae. The drug also reduced the rate of endosomal trafficking of diphtheria toxin, which enters the cytosol from acidified endosomes, and delayed the Golgi-specific glycan modifications and eventual plasma membrane appearance of tsO45 VSV-G protein, a classical marker for anterograde trafficking. CONCLUSIONS AND SIGNIFICANCE: ESI acts on one or more components that function during vesicular transport, whilst at least one retrograde trafficking pathway, that of ricin, remains unperturbed.


Asunto(s)
Hidrazonas/farmacología , Hidroxiurea/análogos & derivados , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Transporte Biológico/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Toxina Diftérica/metabolismo , Toxina Diftérica/toxicidad , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Hidroxiurea/farmacología , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Ricina/metabolismo , Ricina/toxicidad , Toxina Shiga/metabolismo , Toxina Shiga/toxicidad , Factores de Tiempo , Proteínas del Envoltorio Viral/metabolismo
15.
J Cell Sci ; 122(Pt 23): 4393-400, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19903691

RESUMEN

Production and trafficking of proteins entering the secretory pathway of eukaryotic cells is coordinated at the endoplasmic reticulum (ER) in a process that begins with protein translocation via the membrane-embedded ER translocon. The same complex is also responsible for the co-translational integration of membrane proteins and orchestrates polypeptide modifications that are often essential for protein function. We now show that the previously identified inhibitor of ER-associated degradation (ERAD) eeyarestatin 1 (ES(I)) is a potent inhibitor of protein translocation. We have characterised this inhibition of ER translocation both in vivo and in vitro, and provide evidence that ES(I) targets a component of the Sec61 complex that forms the membrane pore of the ER translocon. Further analyses show that ES(I) acts by preventing the transfer of the nascent polypeptide from the co-translational targeting machinery to the Sec61 complex. These results identify a novel effect of ES(I), and suggest that the drug can modulate canonical protein transport from the cytosol into the mammalian ER both in vitro and in vivo.


Asunto(s)
Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Hidrazonas/farmacología , Hidroxiurea/análogos & derivados , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/efectos de los fármacos , Línea Celular Tumoral , Humanos , Hidroxiurea/farmacología , Inmunoprecipitación , Canales de Translocación SEC
16.
J Cell Sci ; 122(Pt 21): 3942-53, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19825935

RESUMEN

Missense mutations in human PLP1, the gene encoding myelin proteolipid protein (PLP), cause dysmyelinating Pelizaeus-Merzbacher disease of varying severity. Although disease pathology has been linked to retention of misfolded PLP in the endoplasmic reticulum (ER) and induction of the unfolded protein response (UPR), the molecular mechanisms that govern phenotypic heterogeneity remain poorly understood. To address this issue, we examined the cellular response to missense mutants of PLP that are associated with distinct disease phenotypes. We found that the mild-disease-associated mutants, W162L and G245A, were cleared from the ER comparatively quickly via proteasomal degradation and/or ER exit. By contrast, the more ;aggressive' A242V mutant, which causes severe disease, was significantly more stable, accumulated at the ER and resulted in a specific activation of the UPR. On the basis of these findings, we propose that the rate at which mutant PLP proteins are cleared from the ER modulates disease severity by determining the extent to which the UPR is activated.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mutación Missense , Proteína Proteolipídica de la Mielina/química , Proteína Proteolipídica de la Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Línea Celular , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Humanos , Proteína Proteolipídica de la Mielina/metabolismo , Enfermedad de Pelizaeus-Merzbacher/genética , Pliegue de Proteína , Estabilidad Proteica
17.
J Mol Biol ; 385(4): 1032-42, 2009 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-19084021

RESUMEN

Proteins that fail to fold or assemble with partner subunits are selectively removed from the endoplasmic reticulum (ER) via the ER-associated degradation (ERAD) pathway. Proteins selected for ERAD are polyubiquitinated and retrotranslocated into the cytosol for degradation by the proteasome. Although it is unclear how proteins are initially identified by the ERAD system in mammalian cells, OS-9 was recently proposed to play a key role in this process. Here we show that OS-9 is upregulated in response to ER stress and is associated both with components of the ERAD machinery and with ERAD substrates. Using RNA interference, we show that OS-9 is required for efficient ubquitination of glycosylated ERAD substrates, suggesting that it helps transfer misfolded proteins to the ubiquitination machinery. We also find that OS-9 binds to a misfolded nonglycosylated protein destined for ERAD, but not to the properly folded wild-type protein. Surprisingly, however, OS-9 is not required for ubiquitination or degradation of this nonglycosylated ERAD substrate. We propose a model in which OS-9 recognises terminally misfolded proteins via polypeptide-based rather than glycan-based signals, but is only required for transferring those bearing N-glycans to the ubiquitination machinery.


Asunto(s)
Retículo Endoplásmico/patología , Glicoproteínas/metabolismo , Mamíferos/metabolismo , Proteínas de Neoplasias/metabolismo , Pliegue de Proteína , Ubiquitinación , Regulación hacia Arriba , Animales , Biología Computacional , Retículo Endoplásmico/efectos de los fármacos , Glicoproteínas/química , Glicosilación/efectos de los fármacos , Células HeLa , Humanos , Lectinas , Modelos Biológicos , Vaina de Mielina/metabolismo , Poliubiquitina/metabolismo , Unión Proteica/efectos de los fármacos , Desnaturalización Proteica , Pliegue de Proteína/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Estrés Fisiológico , Tapsigargina/farmacología , Transfección , Ubiquitinación/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , alfa 1-Antitripsina/química , alfa 1-Antitripsina/metabolismo
18.
Biochem J ; 401(2): 607-12, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17037984

RESUMEN

TorsinA is a widely expressed AAA(+) (ATPases associated with various cellular activities) ATPase of unknown function. Previous studies have described torsinA as a type II protein with a cleavable signal sequence, a single membrane spanning domain, and its C-terminus located in the ER (endoplasmic reticulum) lumen. However, in the present study we show that torsinA is not in fact an integral membrane protein. Instead we find that the mature protein associates peripherally with the ER membrane, most likely through an interaction with an integral membrane protein. Consistent with this model, we provide evidence that the signal peptidase complex cleaves the signal sequence of torsinA, and we show that the region previously suggested to form a transmembrane domain is translocated into the lumen of the ER. The finding that torsinA is a peripheral, and not an integral membrane protein as previously thought, has important implications for understanding the function of this novel ATPase.


Asunto(s)
Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/biosíntesis , Adenosina Trifosfatasas/biosíntesis , Secuencia de Aminoácidos , Sistema Libre de Células , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Serina Endopeptidasas/metabolismo
19.
Cell ; 127(5): 877-9, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17129773

RESUMEN

The signal sequences that target newly synthesized proteins to the endoplasmic reticulum are highly variable; however, the functional significance of this diversity has remained obscure. In this issue, Kang et al. (2006) report that variability in signal sequences allows the cell to selectively regulate the translocation of proteins into the endoplasmic reticulum in a substrate-specific manner.


Asunto(s)
Retículo Endoplásmico/metabolismo , Señales de Clasificación de Proteína , Animales , Humanos , Chaperonas Moleculares/metabolismo , Priones/química , Priones/metabolismo , Pliegue de Proteína , Transporte de Proteínas
20.
Proc Natl Acad Sci U S A ; 102(12): 4342-7, 2005 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-15753308

RESUMEN

Pelizaeus-Merzbacher disease (PMD) is a dysmyelinating disease caused by mutations, deletions, or duplications of the proteolipid protein (PLP) gene. Mutant forms of PLP are retained in the endoplasmic reticulum (ER), and the resulting accumulation of mutant protein is thought to be a direct cause of oligodendrocyte cell death, which is the primary clinical feature of PMD. The molecular mechanisms underlying the toxicity of mutant PLP are however currently unknown. We report here that PMD-linked mutations of PLP are associated with the accelerated assembly of the protein into stable homooligomers that resemble mature, native PLP. Thus although WT PLP forms stable oligomers after an extended maturation period, most likely at the cell surface, mutant forms of PLP rapidly assemble into such oligomers at the ER. Using PLP mutants associated with diseases of varying severity, we show that the formation of stable oligomers correlates with the development of PMD. Based on these findings, we propose that the premature oligomerization of PLP in the ER of oligodendrocytes contributes to the pathology of PMD.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mutación , Proteína Proteolipídica de la Mielina/química , Proteína Proteolipídica de la Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Sustitución de Aminoácidos , Animales , Células COS , Disulfuros/química , Células HeLa , Humanos , Modelos Moleculares , Mutación Missense , Proteína Proteolipídica de la Mielina/metabolismo , Oligodendroglía/metabolismo , Enfermedad de Pelizaeus-Merzbacher/etiología , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dodecil Sulfato de Sodio , Tensoactivos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA