Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22275458

RESUMEN

Covid-19 has caused more than 1 million deaths in the US, including at least 1,204 deaths among children and young people (CYP) aged 0-19 years, with 796 occurring in the one year period April 1, 2021 - March 31, 2022. Deaths among US CYP are rare in general, and so we argue here that the mortality burden of Covid-19 in CYP is best understood in the context of all other causes of CYP death. Using publicly available data from CDC WONDER on NCHSs 113 Selected Causes of Death, and comparing to mortality in 2019, the immediate pre-pandemic period, we find that Covid-19 mortality is among the 10 leading causes of death in CYP aged 0-19 years in the US, ranking 8th among all causes of deaths, 5th in disease-related causes of deaths (excluding accidents, assault and suicide), and 1st in deaths caused by infectious or respiratory diseases. Covid-19 deaths constitute 2.3% of the 10 leading causes of death in this age group. Covid-19 caused substantially more deaths in CYP than major vaccine-preventable diseases did historically in the period before vaccines became available. Various factors including underreporting and Covid-19s role as a contributing cause of death from other diseases mean that our estimates may understate the true mortality burden of Covid-19. Our findings underscore the public health relevance of Covid-19 to CYP. In the likely future context of sustained SARS-CoV-2 circulation, pharmaceutical and non-pharmaceutical interventions will continue to play an important role in limiting transmission of the virus in CYP and mitigating severe disease.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21265731

RESUMEN

The SARS-CoV-2 Gamma variant spread rapidly across Brazil, causing substantial infection and death waves. We use individual-level patient records following hospitalisation with suspected or confirmed COVID-19 to document the extensive shocks in hospital fatality rates that followed Gammas spread across 14 state capitals, and in which more than half of hospitalised patients died over sustained time periods. We show that extensive fluctuations in COVID-19 in-hospital fatality rates also existed prior to Gammas detection, and were largely transient after Gammas detection, subsiding with hospital demand. Using a Bayesian fatality rate model, we find that the geographic and temporal fluctuations in Brazils COVID-19 in-hospital fatality rates are primarily associated with geographic inequities and shortages in healthcare capacity. We project that approximately half of Brazils COVID-19 deaths in hospitals could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization, and pandemic preparedness are critical to minimize population wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries. NoteThe following manuscript has appeared as Report 46 - Factors driving extensive spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals at https://spiral.imperial.ac.uk:8443/handle/10044/1/91875. One sentence summaryCOVID-19 in-hospital fatality rates fluctuate dramatically in Brazil, and these fluctuations are primarily associated with geographic inequities and shortages in healthcare capacity.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21259405

RESUMEN

India has seen a surge of SARS-CoV-2 infections and deaths in early part of 2021, despite having controlled the epidemic during 2020. Building on a two-strain, semi-mechanistic model that synthesizes mortality and genomic data, we find evidence that altered epidemiological properties of B.1.617.2 (Delta) variant play an important role in this resurgence in India. Under all scenarios of immune evasion, we find an increased transmissibility advantage for B.1617.2 against all previously circulating strains. Using an extended SIR model accounting for reinfections and wanning immunity, we produce evidence in support of how early public interventions in March 2021 would have helped to control transmission in the country. We argue that enhanced genomic surveillance along with constant assessment of risk associated with increased transmission is critical for pandemic responsiveness. One Sentence SummaryAltered epidemiological characteristics of B.1.617.2 and delayed public health interventions contributed to the resurgence of SARS-CoV-2 in India from February to May 2021.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21258076

RESUMEN

Delhi, the national capital of India, has experienced multiple SARS-CoV-2 outbreaks in 2020 and reached a population seropositivity of over 50% by 2021. During April 2021, the city became overwhelmed by COVID-19 cases and fatalities, as a new variant B.1.617.2 (Delta) replaced B.1.1.7 (Alpha). A Bayesian model explains the growth advantage of Delta through a combination of increased transmissibility and partial reduction of immunity elicited by prior infection (median estimates; x1.5-fold, 20% reduction). Seropositivity of an employee and family cohort increased from 42% to 86% between March and July 2021, with 27% reinfections, as judged by increased antibody concentration after previous decline. The likely high transmissibility and partial evasion of immunity by the Delta variant contributed to an overwhelming surge in Delhi. One-Sentence SummaryDelhi experienced an overwhelming surge of COVID-19 cases and fatalities peaking in May 2021 as the highly transmissible and immune evasive Delta variant replaced the Alpha variant.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-443253

RESUMEN

The SARS-CoV-2 B.1.617.2 (Delta) variant was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha). In vitro, B.1.617.2 is 6-fold less sensitive to serum neutralising antibodies from recovered individuals, and 8-fold less sensitive to vaccine-elicited antibodies as compared to wild type Wuhan-1 bearing D614G. Serum neutralising titres against B.1.617.2 were lower in ChAdOx-1 versus BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies against the receptor binding domain (RBD) and N-terminal domain (NTD), in particular to the clinically approved bamlavinimab and imdevimab monoclonal antibodies. B.1.617.2 demonstrated higher replication efficiency in both airway organoid and human airway epithelial systems as compared to B.1.1.7, associated with B.1.617.2 spike being in a predominantly cleaved state compared to B.1.1.7. Additionally we observed that B.1.617.2 had higher replication and spike mediated entry as compared to B.1.617.1, potentially explaining B.1.617.2 dominance. In an analysis of over 130 SARS-CoV-2 infected healthcare workers across three centres in India during a period of mixed lineage circulation, we observed substantially reduced ChAdOx-1 vaccine efficacy against B.1.617.2 relative to non-B.1.617.2. Compromised vaccine efficacy against the highly fit and immune evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21254330

RESUMEN

As European governments face resurging waves of COVID-19, non-pharmaceutical interventions (NPIs) continue to be the primary tool for infection control. However, updated estimates of their relative effectiveness have been absent for Europes second wave, largely due to a lack of collated data that considers the increased subnational variation and diversity of NPIs. We collect the largest dataset of NPI implementation dates in Europe, spanning 114 subnational areas in 7 countries, with a systematic categorisation of interventions tailored to the second wave. Using a hierarchical Bayesian transmission model, we estimate the effectiveness of 17 NPIs from local case and death data. We manually validate the data, address limitations in modelling from previous studies, and extensively test the robustness of our estimates. The combined effect of all NPIs was smaller relative to estimates from the first half of 2020, indicating the strong influence of safety measures and individual protective behaviours--such as distancing--that persisted after the first wave. Closing specific businesses was highly effective. Gathering restrictions were highly effective but only for the strictest limits. We find smaller effects for closing educational institutions compared to the first wave, suggesting that safer operation of schools was possible with a set of stringent safety measures including testing and tracing, preventing mixing, and smaller classes. These results underscore that effectiveness estimates from the early stage of an epidemic are measured relative to pre-pandemic behaviour. Updated estimates are required to inform policy in an ongoing pandemic.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253242

RESUMEN

Previous work has shown that environment affects SARS-CoV-2 transmission, but it is unclear whether emerging strains show similar responses. Here we show that, like other SARS-CoV-2 strains, lineage B.1.1.7 spread with greater transmission in colder and more densely populated parts of England. However, we also find evidence of B.1.1.7 having a transmission advantage at warmer temperatures compared to other strains. This implies that spring and summer conditions are unlikely to slow B.1.1.7s invasion in Europe and across the Northern hemisphere - an important consideration for public health interventions.

8.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21252554

RESUMEN

Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite high levels of previous infection there. Through genome sequencing of viruses sampled in Manaus between November 2020 and January 2021, we identified the emergence and circulation of a novel SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around early November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.4-2.2 times more transmissible and 25-61% more likely to evade protective immunity elicited by previous infection with non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness. One-Sentence SummaryWe report the evolution and emergence of a SARS-CoV-2 lineage of concern associated with rapid transmission in Manaus.

9.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21252277

RESUMEN

ObjectiveMeasure the effects of the Tier system on the COVID-19 pandemic in the UK between the first and second national lockdowns, before the emergence of the B.1.1.7 variant of concern. DesignModelling study combining estimates of the real-time reproduction number Rt (derived from UK case, death and serological survey data) with publicly available data on regional non-pharmaceutical interventions. We fit a Bayesian hierarchical model with latent factors using these quantities, to account for broader national trends in addition to subnational effects from Tiers. SettingThe UK at Lower Tier Local Authority (LTLA) level. Primary and secondary outcome measuresReduction in real-time reproduction number Rt. ResultsNationally, transmission increased between July and late September, regional differences notwithstanding. Immediately prior to the introduction of the tier system, Rt averaged 1.3 (0.9 - 1.6) across LTLAs, but declined to an average of 1.1 (0.86 - 1.42) two weeks later. Decline in transmission was not solely attributable to Tiers. Tier 1 had negligible effects. Tiers 2 and 3 respectively reduced transmission by 6% (5%-7%) and 23% (21%-25%). 93% of LTLAs would have begun to suppress their epidemics if every LTLA had gone into Tier 3 by the second national lockdown, whereas only 29% did so in reality. ConclusionsThe relatively small effect sizes found in this analysis demonstrate that interventions at least as stringent as Tier 3 are required to suppress transmission, especially considering more transmissible variants, at least until effective vaccination is widespread or much greater population immunity has amassed. Strengths and limitations of this studyO_LIFirst study to measure effects of UK Tier system for SARS-CoV-2 control at national and regional level. C_LIO_LIModel makes minimal assumptions and is primarily data driven. C_LIO_LIInsufficient statistical power to estimate effects of individual interventions that comprise Tiers, or their interaction. C_LIO_LIEstimates show that Tiers 1 and 2 are insufficient to suppress transmission, at least until widespread population immunity has amassed. Emergence of more transmissible variants of concern unfortunately supports this conclusion. C_LI

10.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20249034

RESUMEN

The SARS-CoV-2 lineage B.1.1.7, now designated Variant of Concern 202012/01 (VOC) by Public Health England, originated in the UK in late Summer to early Autumn 2020. We examine epidemiological evidence for this VOC having a transmission advantage from several perspectives. First, whole genome sequence data collected from community-based diagnostic testing provides an indication of changing prevalence of different genetic variants through time. Phylodynamic modelling additionally indicates that genetic diversity of this lineage has changed in a manner consistent with exponential growth. Second, we find that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S-gene target failures (SGTF) in community-based diagnostic PCR testing. Third, we examine growth trends in SGTF and non-SGTF case numbers at local area level across England, and show that the VOC has higher transmissibility than non-VOC lineages, even if the VOC has a different latent period or generation time. Available SGTF data indicate a shift in the age composition of reported cases, with a larger share of under 20 year olds among reported VOC than non-VOC cases. Fourth, we assess the association of VOC frequency with independent estimates of the overall SARS-CoV-2 reproduction number through time. Finally, we fit a semi-mechanistic model directly to local VOC and non-VOC case incidence to estimate the reproduction numbers over time for each. There is a consensus among all analyses that the VOC has a substantial transmission advantage, with the estimated difference in reproduction numbers between VOC and non-VOC ranging between 0.4 and 0.7, and the ratio of reproduction numbers varying between 1.4 and 1.8. We note that these estimates of transmission advantage apply to a period where high levels of social distancing were in place in England; extrapolation to other transmission contexts therefore requires caution.

11.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20248813

RESUMEN

BackgroundNon-pharmaceutical interventions such as lockdowns, mask wearing and social distancing have been the primary measures to effectively combat the COVID-19 pandemic. Such measures are highly effective when there is strong population wide adherence which needs to be facilitated by information on the current risks posed by the pandemic alongside a clear exposition of the rules and guidelines in place. Here we address the issue of communication on the pandemic by offering data and analysis of online news media coverage of COVID-19. MethodsWe collected 26 million news articles from the front pages of 172 major online news sources in 11 countries (available at http://sciride.org). Using topic detection we identified COVID-19-related content to quantify the proportion of total coverage pandemic received in 2020. Sentiment analysis tool Vader was employed to stratify the emotional polarity of COVID-19 reporting. Further topic detection and sentiment analysis was performed on COVID-19 articles to reveal the leading themes in pandemic reporting and their respective emotional polarizations. FindingsWe find that COVID-19 coverage accounted for approximately 25% of all front-page online news articles between January and October 2020. Sentiment analysis of English-speaking sources reveals that the overall COVID-19 coverage cannot be simply classified as negative due to the disease subject matter, suggesting a wide heterogeneous reporting of the pandemic. Within this heterogenous coverage, 16% of COVID-19 news articles (or 4% of all English-speaking articles) can be classified as highly negatively polarized, citing issues such as death, fear or crisis. InterpretationThe goal of pandemic public health communication is to increase understanding of distancing rules and maximize the impact of any governmental policy. Our results suggest an information overload in COVID-19 reporting that could risk obscuring effective policy communication. We hope that our data and analysis will inform health communication strategy to minimize the risks of COVID-19 while vaccination regimes are being introduced.

12.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20236661

RESUMEN

We propose a new framework to model the COVID-19 epidemic of the United Kingdom at the level of local authorities. The model fits within a general framework for semi-mechanistic Bayesian models of the epidemic, with some important innovations: we model the proportion of infections that result in reported deaths and cases as random variables. This is in contrast to standard frameworks that model the latent infection as a deterministic function of time varying reproduction number, Rt. The model is tailored and designed to be updated daily based on publicly available data. We envisage the model to be useful for now-casting and short-term projections of the epidemic as well as estimating historical trends. The model fits are available on a public website, https://imperialcollegelondon.github.io/covid19local. The model is currently being used by the Scottish government in their decisions on interventions within Scotland [1, issue 24 to now].

13.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20198010

RESUMEN

Many popular disease transmission models have helped nations respond to the COVID-19 pandemic by informing decisions about pandemic planning, resource allocation, implementation of social distancing measures and other non-pharmaceutical interventions. We study how five epidemiological models forecast and assess the course of the pandemic in India: a baseline model, an extended SIR (eSIR) model, two extended SEIR (SAPHIRE and SEIR-fansy) models, and a semi-mechanistic Bayesian hierarchical model (ICM). Using COVID-19 data for India from March 15 to June 18 to train the models, we generate predictions from each of the five models from June 19 to July 18. To compare prediction accuracy with respect to reported cumulative and active case counts and cumulative death counts, we compute the symmetric mean absolute prediction error (SMAPE) for each of the five models. For active case counts, SMAPE values are 0.72 (SEIR-fansy) and 33.83 (eSIR). For cumulative case counts, SMAPE values are 1.76 (baseline) 23.10 (eSIR), 2.07 (SAPHIRE) and 3.20 (SEIR-fansy). For cumulative death counts, the SMAPE values are 7.13 (SEIR-fansy) and 26.30 (eSIR). For cumulative cases and deaths, we compute Pearsons and Lins correlation coefficients to investigate how well the projected and observed reported COVID-counts agree. Three models (SAPHIRE, SEIR-fansy and ICM) return total (sum of reported and unreported) counts as well. We compute underreporting factors as of June 30 and note that the SEIR-fansy model reports the highest underreporting factor for active cases (6.10) and cumulative deaths (3.62), while the SAPHIRE model reports the highest underreporting factor for cumulative cases (27.79).

14.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20197376

RESUMEN

Following initial declines, in mid 2020, a resurgence in transmission of novel coronavirus disease (COVID-19) has occurred in the United States and parts of Europe. Despite the wide implementation of non-pharmaceutical interventions, it is still not known how they are impacted by changing contact patterns, age and other demographics. As COVID-19 disease control becomes more localised, understanding the age demographics driving transmission and how these impacts the loosening of interventions such as school reopening is crucial. Considering dynamics for the United States, we analyse aggregated, age-specific mobility trends from more than 10 million individuals and link these mechanistically to age-specific COVID-19 mortality data. In contrast to previous approaches, we link mobility to mortality via age-specific contact patterns and use this rich relationship to reconstruct accurate transmission dynamics. Contrary to anecdotal evidence, we find little support for age-shifts in contact and transmission dynamics over time. We estimate that, until August, 63.4% [60.9%-65.5%] of SARS-CoV-2 infections in the United States originated from adults aged 20-49, while 1.2% [0.8%-1.8%] originated from children aged 0- 9. In areas with continued, community-wide transmission, our transmission model predicts that re-opening kindergartens and elementary schools could facilitate spread and lead to additional COVID-19 attributable deaths over a 90-day period. These findings indicate that targeting interventions to adults aged 20-49 are an important consideration in halting resurgent epidemics and preventing COVID-19-attributable deaths when kindergartens and elementary schools reopen.

15.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20194258

RESUMEN

Background: Unprecedented public health interventions including travel restrictions and national lockdowns have been implemented to stem the COVID-19 epidemic, but the effectiveness of non-pharmaceutical interventions is still debated. International comparisons are hampered by highly variable conditions under which epidemics spread and differences in the timing and scale of interventions. Cumulative COVID-19 morbidity and mortality are functions of both the rate of epidemic growth and the duration of uninhibited growth before interventions were implemented. Incomplete and sporadic testing during the early COVID-19 epidemic makes it difficult to identify how long SARS-CoV-2 was circulating in different places. SARS-CoV-2 genetic sequences can be analyzed to provide an estimate of both the time of epidemic origin and the rate of early epidemic growth in different settings. Methods: We carried out a phylogenetic analysis of more than 29,000 publicly available whole genome SARS-CoV-2 sequences from 57 locations to estimate the time that the epidemic originated in different places. These estimates were cross-referenced with dates of the most stringent interventions in each location as well as the number of cumulative COVID-19 deaths following maximum intervention. Phylodynamic methods were used to estimate the rate of early epidemic growth and proxy estimates of epidemic size. Findings: The time elapsed between epidemic origin and maximum intervention is strongly associated with different measures of epidemic severity and explains 46% of variance in numbers infected at time of maximum intervention. The reproduction number is independently associated with epidemic severity. In multivariable regression models, epidemic severity was not associated with census population size. The time elapsed between detection of initial COVID-19 cases to interventions was not associated with epidemic severity, indicating that many locations experienced long periods of cryptic transmission. Interpretation: Locations where strong non-pharmaceutical interventions were implemented earlier experienced much less severe COVID-19 morbidity and mortality during the period of study.

16.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20154617

RESUMEN

Knowing COVID-19 epidemiological distributions, such as the time from patient admission to death, is directly relevant to effective primary and secondary care planning, and moreover, the mathematical modelling of the pandemic generally. We determine epidemiological distributions for patients hospitalised with COVID-19 using a large dataset (N = 21,000 - 157,000) from the Brazilian Sistema de Informacao de Vigilancia Epidemiologica da Gripe database. A joint Bayesian subnational model with partial pooling is used to simultaneously describe the 26 states and one federal district of Brazil, and shows significant variation in the mean of the symptom-onset-to-death time, with ranges between 11.2-17.8 days across the different states, and a mean of 15.2 days for Brazil. We find strong evidence in favour of specific probability density function choices: for example, the gamma distribution gives the best fit for onset-to-death and the generalised lognormal for onset-to-hospital-admission. Our results show that epidemiological distributions have considerable geographical variation, and provide the first estimates of these distributions in a low and middle-income setting. At the subnational level, variation in COVID-19 outcome timings are found to be correlated with poverty, deprivation and segregation levels, and weaker correlation is observed for mean age, wealth and urbanicity.

17.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20152355

RESUMEN

As of 1st June 2020, the US Centers for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly modelled the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We used changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. Nationally, we estimated 3.7% [3.4%-4.0%] of the population had been infected by 1st June 2020, with wide variation between states, and approximately 0.01% of the population was infectious. We also demonstrated that good model forecasts of deaths for the next 3 weeks with low error and good coverage of our credible intervals.

18.
Darlan da Silva Candido; Ingra Morales Claro; Jaqueline Goes de Jesus; William Marciel de Souza; Filipe Romero Rebello Moreira; Simon Dellicour; Thomas A. Mellan; Louis du Plessis; Rafael Henrique Moraes Pereira; Flavia Cristina da Silva Sales; Erika Regina Manuli; Julien Theze; Luis Almeida; Mariane Talon de Menezes; Carolina Moreira Voloch; Marcilio Jorge Fumagalli; Thais de Moura Coletti; Camila Alves Maia Silva; Mariana Severo Ramundo; Mariene Ribeiro Amorim; Henrique Hoeltgebaum; Swapnil Mishra; Mandev Gill; Luiz Max Carvalho; Lewis Fletcher Buss; Carlos Augusto Prete Jr.; Jordan Ashworth; Helder Nakaya; Pedro da Silva Peixoto; Oliver J Brady; Samuel M. Nicholls; Amilcar Tanuri; Atila Duque Rossi; Carlos Kaue Vieira Braga; Alexandra Lehmkuhl Gerber; Ana Paula Guimaraes; Nelson Gaburo Jr.; Cecilia Salete Alencar; Alessandro Clayton de Souza Ferreira; Cristiano Xavier Lima; Jose Eduardo Levi; Celso Granato; Giula Magalhaes Ferreira; Ronaldo da Silva Francisco Jr.; Fabiana Granja; Marcia Teixeira Garcia; Maria Luiza Moretti; Mauricio Wesley Perroud Jr.; Terezinha Marta Pereira Pinto Castineiras; Carolina Dos Santos Lazari; Sarah C Hill; Andreza Aruska de Souza Santos; Camila Lopes Simeoni; Julia Forato; Andrei Carvalho Sposito; Angelica Zaninelli Schreiber; Magnun Nueldo Nunes Santos; Camila Zolini Sa; Renan Pedra Souza; Luciana Cunha Resende Moreira; Mauro Martins Teixeira; Josy Hubner; Patricia Asfora Falabella Leme; Rennan Garcias Moreira; Mauricio Lacerda Nogueira; - CADDE-Genomic-Network; Neil Ferguson; Silvia Figueiredo Costa; Jose Luiz Proenca-Modena; Ana Tereza Vasconcelos; Samir Bhatt; Philippe Lemey; Chieh-Hsi Wu; Andrew Rambaut; Nick J Loman; Renato Santana Aguiar; Oliver G Pybus; Ester Cerdeira Sabino; Nuno Rodrigues Faria.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20128249

RESUMEN

Brazil currently has one of the fastest growing SARS-CoV-2 epidemics in the world. Due to limited available data, assessments of the impact of non-pharmaceutical interventions (NPIs) on virus transmission and epidemic spread remain challenging. We investigate the impact of NPIs in Brazil using epidemiological, mobility and genomic data. Mobility-driven transmission models for Sao Paulo and Rio de Janeiro cities show that the reproduction number (Rt) reached below 1 following NPIs but slowly increased to values between 1 to 1.3 (1.0-1.6). Genome sequencing of 427 new genomes and analysis of a geographically representative genomic dataset from 21 of the 27 Brazilian states identified >100 international introductions of SARS-CoV-2 in Brazil. We estimate that three clades introduced from Europe emerged between 22 and 27 February 2020, and were already well-established before the implementation of NPIs and travel bans. During this first phase of the epidemic establishment of SARS-CoV-2 in Brazil, we find that the virus spread mostly locally and within-state borders. Despite sharp decreases in national air travel during this period, we detected a 25% increase in the average distance travelled by air passengers during this time period. This coincided with the spread of SARS-CoV-2 from large urban centers to the rest of the country. In conclusion, our results shed light on the role of large and highly connected populated centres in the rapid ignition and establishment of SARS-CoV-2, and provide evidence that current interventions remain insufficient to keep virus transmission under control in Brazil. One Sentence SummaryJoint analysis of genomic, mobility and epidemiological novel data provide unique insight into the spread and transmission of the rapidly evolving epidemic of SARS-CoV-2 in Brazil.

19.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20096701

RESUMEN

1Brazil is currently reporting the second highest number of COVID-19 deaths in the world. Here we characterise the initial dynamics of COVID-19 across the country and assess the impact of non-pharmaceutical interventions (NPIs) that were implemented using a semi-mechanistic Bayesian hierarchical modelling approach. Our results highlight the significant impact these NPIs had across states, reducing an average Rt > 3 to an average of 1.5 by 9-May-2020, but that these interventions failed to reduce Rt < 1, congruent with the worsening epidemic Brazil has experienced since. We identify extensive heterogeneity in the epidemic trajectory across Brazil, with the estimated number of days to reach 0.1% of the state population infected since the first nationally recorded case ranging from 20 days in Sao Paulo compared to 60 days in Goias, underscoring the importance of sub-national analyses in understanding asynchronous state-level epidemics underlying the national spread and burden of COVID-19.

20.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20089359

RESUMEN

Italy was the first European country to experience sustained local transmission of COVID-19. As of 1st May 2020, the Italian health authorities reported 28,238 deaths nationally. To control the epidemic, the Italian government implemented a suite of non-pharmaceutical interventions (NPIs), including school and university closures, social distancing and full lockdown involving banning of public gatherings and non essential movement. In this report, we model the effect of NPIs on transmission using data on average mobility. We estimate that the average reproduction number (a measure of transmission intensity) is currently below one for all Italian regions, and significantly so for the majority of the regions. Despite the large number of deaths, the proportion of population that has been infected by SARS-CoV-2 (the attack rate) is far from the herd immunity threshold in all Italian regions, with the highest attack rate observed in Lombardy (13.18% [10.66%-16.70%]). Italy is set to relax the currently implemented NPIs from 4th May 2020. Given the control achieved by NPIs, we consider three scenarios for the next 8 weeks: a scenario in which mobility remains the same as during the lockdown, a scenario in which mobility returns to pre-lockdown levels by 20%, and a scenario in which mobility returns to pre-lockdown levels by 40%. The scenarios explored assume that mobility is scaled evenly across all dimensions, that behaviour stays the same as before NPIs were implemented, that no pharmaceutical interventions are introduced, and it does not include transmission reduction from contact tracing, testing and the isolation of confirmed or suspected cases. New interventions, such as enhanced testing and contact tracing are going to be introduced and will likely contribute to reductions in transmission; therefore our estimates should be viewed as pessimistic projections. We find that, in the absence of additional interventions, even a 20% return to pre-lockdown mobility could lead to a resurgence in the number of deaths far greater than experienced in the current wave in several regions. Future increases in the number of deaths will lag behind the increase in transmission intensity and so a second wave will not be immediately apparent from just monitoring of the daily number of deaths. Our results suggest that SARS-CoV-2 transmission as well as mobility should be closely monitored in the next weeks and months. To compensate for the increase in mobility that will occur due to the relaxation of the currently implemented NPIs, adherence to the recommended social distancing measures alongside enhanced community surveillance including swab testing, contact tracing and the early isolation of infections are of paramount importance to reduce the risk of resurgence in transmission. SUGGESTED CITATIONMichaela A. C. Vollmer, Swapnil Mishra, H Juliette T Unwin, Axel Gandy et al. Using mobility to estimate the transmission intensity of COVID-19 in Italy: a subnational analysis with future scenarios. Imperial College London (2020) doi:https://doi.org/10.25561/78677 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...