Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Horm Behav ; 126: 104848, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32918873

RESUMEN

The increased prevalence of neurodevelopmental disorders during the last half-century led us to investigate the potential for intergenerational detrimental neurodevelopmental effects of synthetic female gonadal hormones, typically used in contraceptive pills. We examined 3 separate cohorts of mice over the span of 2 years, a total of 150 female F0 mice and over 300 male and female rodents from their F1 progeny. We demonstrate that F1 male offsprings of female mice previously exposed to the synthetic estrogen 17α-ethinylestradiol (EE2) in combination with the synthetic progestin Norethindrone, exhibit neurodevelopmental and behavioral differences compared to control mice. Because the EE2 + Norethindrone administration resulted in gene expression changes in the exposed F0 mice ovaries persisting after the end of treatment, it is likely that the synthetic hormone treatment caused changes in the germline cells and that led to altered neurodevelopment in the offsprings. An altered gene expression pattern was discovered in the frontal cortex of male mice from the first offspring (F1.1) at infancy and an ADHD-like hyperactive locomotor behavior was exhibited in young male mice from the second offspring (F1.2) of female mice treated with contraceptive pill doses of EE2 + Norethindrone prior to pregnancy. The intergenerational neurodevelopmental effects of EE2 + Norethindrone treatment were sex specific, predominantly affecting males. Our observations in mice support the hypothesis that the use of synthetic contraceptive hormones is a potential environmental factor impacting the prevalence of human neurodevelopmental disorders. Additionally, our results indicate that contraceptive hormone drug safety assessments may need to be extended to F1 offspring.


Asunto(s)
Encéfalo/embriología , Agentes Anticonceptivos Hormonales/efectos adversos , Congéneres del Estradiol/efectos adversos , Exposición Materna/efectos adversos , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Cognición/efectos de los fármacos , Etinilestradiol/efectos adversos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos del Neurodesarrollo/inducido químicamente , Trastornos del Neurodesarrollo/fisiopatología , Embarazo
2.
Mol Ther Nucleic Acids ; 19: 1399-1412, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32160709

RESUMEN

Knockout of the memory suppressor gene histone deacetylase 2 (Hdac2) in mice elicits cognitive enhancement, and drugs that block HDAC2 have potential as therapeutics for disorders affecting memory. Currently available HDAC2 catalytic activity inhibitors are not fully isoform specific and have short half-lives. Antisense oligonucleotides (ASOs) are drugs that elicit extremely long-lasting, specific inhibition through base pairing with RNA targets. We utilized an ASO to reduce Hdac2 messenger RNA (mRNA) in mice and determined its longevity, specificity, and mechanism of repression. A single injection of the Hdac2-targeted ASO in the central nervous system produced persistent reduction in HDAC2 protein and Hdac2 mRNA levels for 16 weeks. It enhanced object location memory for 8 weeks. RNA sequencing (RNA-seq) analysis of brain tissues revealed that the repression was specific to Hdac2 relative to related Hdac isoforms, and Hdac2 reduction caused alterations in the expression of genes involved in extracellular signal-regulated kinase (ERK) and memory-associated immune signaling pathways. Hdac2-targeted ASOs also suppress a nonpolyadenylated Hdac2 regulatory RNA and elicit direct transcriptional suppression of the Hdac2 gene through stalling RNA polymerase II. These findings identify transcriptional suppression of the target gene as a novel mechanism of action of ASOs.

3.
Nat Neurosci ; 23(3): 375-385, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015540

RESUMEN

Autism spectrum disorder (ASD) is genetically heterogeneous with convergent symptomatology, suggesting common dysregulated pathways. In this study, we analyzed brain transcriptional changes in five mouse models of Pitt-Hopkins syndrome (PTHS), a syndromic form of ASD caused by mutations in the TCF4 gene, but not the TCF7L2 gene. Analyses of differentially expressed genes (DEGs) highlighted oligodendrocyte (OL) dysregulation, which we confirmed in two additional mouse models of syndromic ASD (Ptenm3m4/m3m4 and Mecp2tm1.1Bird). The PTHS mouse models showed cell-autonomous reductions in OL numbers and myelination, functionally confirming OL transcriptional signatures. We also integrated PTHS mouse model DEGs with human idiopathic ASD postmortem brain RNA-sequencing data and found significant enrichment of overlapping DEGs and common myelination-associated pathways. Notably, DEGs from syndromic ASD mouse models and reduced deconvoluted OL numbers distinguished human idiopathic ASD cases from controls across three postmortem brain data sets. These results implicate disruptions in OL biology as a cellular mechanism in ASD pathology.


Asunto(s)
Trastorno del Espectro Autista/genética , Dermatoglifia del ADN , Hiperventilación/genética , Discapacidad Intelectual/genética , Vaina de Mielina/genética , Transcriptoma/genética , Envejecimiento , Animales , Recuento de Células , Facies , Regulación de la Expresión Génica , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Noqueados , Oligodendroglía/metabolismo , Fosfohidrolasa PTEN/genética , Cultivo Primario de Células , Transducción de Señal/genética , Factor de Transcripción 4/genética
4.
Neurobiol Learn Mem ; 161: 149-157, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31002880

RESUMEN

Transcriptional changes in the hippocampus are required for memory formation, and these changes are regulated by numerous post-translational modifications of chromatin-associated proteins. One of the epigenetic marks that has been implicated in memory formation is histone 3 lysine 4 trimethylation (H3K4me3), and this modification is found at the promoters of actively transcribed genes. The total levels of H3K4me3 are increased in the CA1 region of the hippocampus during memory formation, and genetic perturbation of the K4 methyltransferases and demethylases interferes with forming memories. Previous chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses failed to detect changes in H3K4me3 levels at the promoters of memory-linked genes. Since the breadth of H3K4me3 marks was recently reported to be associated with the transcriptional outcome of a gene, we re-analyzed H3K4me3 ChIP-seq data sets to identify the role of H3K4me3 broad domains in CA1 neurons, as well as identify differences in breadth that occur during contextual fear conditioning. We found that, under baseline conditions, broad H3K4me3 peaks mark important learning and memory genes and are often regulated by super-enhancers. The peaks at many learning-associated genes become broader during novel environment exposure and memory formation. Furthermore, the important learning- and memory-associated lysine methyltransferases, Kmt2a and Kmt2b, are involved in maintaining H3K4me3 peak width. Our findings highlight the importance of analyzing H3K4me3 peak shape, and demonstrate that breadth of H3K4me3 marks in neurons of the hippocampus is regulated during memory formation.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Condicionamiento Clásico/fisiología , Epigénesis Genética/fisiología , Histonas/metabolismo , Memoria/fisiología , Transcripción Genética/fisiología , Activación Transcripcional/fisiología , Animales , Miedo/fisiología , Femenino , N-Metiltransferasa de Histona-Lisina/metabolismo , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Proteína de la Leucemia Mieloide-Linfoide/metabolismo
5.
Methods Mol Biol ; 1941: 167-188, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30707434

RESUMEN

Recent findings indicate that glutamate receptors are regulated at the epigenetic level through the posttranslational modification of histones and through DNA methylation. Furthermore, dysregulation of these marks in the context of neurological disease has been shown to influence glutamate receptor function. Over the past two decades, an appreciation for the essential role epigenetic mechanisms play in nervous system function has led to the development of many methods and tools to map, quantitate, and manipulate these chromatin marks. Here we describe two popular methods used to quantitate DNA methylation levels at the gene or nucleotide level. The first, cloning-based bisulfite sequencing involves modification of DNA samples using the chemical sodium bisulfite (BS) , which deaminates all unmethylated cytosines to form uracil. Subsequent PCR amplification converts the uracils to thymine, leaving any cytosines in the PCR product representative of methylation. Fragments are then cloned and sequenced to quantitate the percentage of methylation at each cytosine. The second technique, methyl-binding domain capture (MBDCap), involves shearing the genomic DNA into fragments via sonication. Samples are then incubated with magnetic beads conjugated to methyl-binding domain (MBD) peptides to bind and enrich fragments containing methylated CpGs. Quantitation of DNA methylation levels are then measured indirectly using qRT-PCR with primers specific to the region of interest. Because these methods do not require advanced technical knowledge and can be performed with common laboratory equipment, they are great options for interrogating DNA methylation patterns at the level of the gene, the regulatory region, or in the case of bisulfite sequencing, the nucleotide.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Reacción en Cadena de la Polimerasa/métodos , Receptores de Glutamato/fisiología , Secuencias Reguladoras de Ácido Ribonucleico , Análisis de Secuencia de ADN/métodos , Sulfitos/química , Epigénesis Genética , Humanos , Receptores de Glutamato/genética
6.
J Neurosci ; 39(18): 3454-3469, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30804093

RESUMEN

Vagus nerve stimulation (VNS) has been shown to enhance learning and memory, yet the mechanisms behind these enhancements are unknown. Here, we present evidence that epigenetic modulation underlies VNS-induced improvements in cognition. We show that VNS enhances novelty preference (NP); alters the hippocampal, cortical, and blood epigenetic transcriptomes; and epigenetically modulates neuronal plasticity and stress-response signaling genes in male Sprague Dawley rats. Brain-behavior analysis revealed structure-specific relationships between NP test performance (NPTP) and epigenetic alterations. In the hippocampus, NPTP correlated with decreased histone deacetylase 11 (HDAC11), a transcriptional repressor enriched in CA1 cells important for memory consolidation. In the cortex, the immediate early gene (IEG) ARC was increased in VNS rats and correlated with transcription of plasticity genes and epigenetic regulators, including HDAC3. For rats engaged in NPTP, ARC correlated with performance. Interestingly, blood ARC transcripts decreased in VNS rats performing NPTP, but increased in VNS-only rats. Because DNA double-strand breaks (DSBs) facilitate transcription of IEGs, we investigated phosphorylated H2A.X (γH2A.X), a histone modification known to colocalize with DSBs. In agreement with reduced cortical stress-response transcription factor NF-κB1, chromatin immunoprecipitation revealed reduced γH2A.X in the ARC promoter. Surprisingly, VNS did not significantly reduce transcription of cortical or hippocampal proinflammatory cytokines. However, TNFRSF11B (osteoprotegerin) correlated with NPTP as well as plasticity, stress-response signaling, and epigenetic regulation transcripts in both hippocampus and cortex. Together, our findings provide the first evidence that VNS induces widespread changes in the cognitive epigenetic landscape and specifically affects epigenetic modulators associated with NPTP, stress-response signaling, memory consolidation, and cortical neural remodeling.SIGNIFICANCE STATEMENT Recent studies have implicated vagus nerve stimulation (VNS) in enhanced learning and memory. However, whereas epigenetic modifications are known to play an important role in memory, the particular mechanisms involved in VNS-enhanced cognition are unknown. In this study, we examined brain and behavior changes in VNS and sham rats performing a multiday novelty preference (NP) task. We found that VNS activated specific histone modifications and DNA methylation changes at important stress-response signaling and plasticity genes. Both cortical and hippocampal plasticity changes were predictive of NP test performance. Our results reveal important epigenetic alterations associated with VNS cognitive improvements, as well as new potential pharmacological targets for enhancing cortical and hippocampal plasticity.


Asunto(s)
Cognición/fisiología , Epigénesis Genética , Estimulación del Nervio Vago , Animales , Señalización del Calcio , Corteza Cerebral/metabolismo , Conducta Exploratoria , Hipocampo/metabolismo , Masculino , Plasticidad Neuronal , Ratas Sprague-Dawley , Estrés Fisiológico , Transcriptoma
7.
Epigenetics Chromatin ; 12(1): 7, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30616667

RESUMEN

Epigenetic modifications such as histone methylation permit change in chromatin structure without accompanying change in the underlying genomic sequence. A number of studies in animal models have shown that dysregulation of various components of the epigenetic machinery causes cognitive deficits at the behavioral level, suggesting that proper epigenetic control is necessary for the fundamental processes of learning and memory. Histone H3 lysine K4 (H3K4) methylation comprises one component of such epigenetic control, and global levels of this mark are increased in the hippocampus during memory formation. Modifiers of H3K4 methylation are needed for memory formation, shown through animal studies, and many of the same modifiers are mutated in human cognitive diseases. Indeed, all of the known H3K4 methyltransferases and four of the known six H3K4 demethylases have been associated with impaired cognition in a neurologic or psychiatric disorder. Cognitive impairment in such patients often manifests as intellectual disability, consistent with a role for H3K4 methylation in learning and memory. As a modification quintessentially, but not exclusively, associated with transcriptional activity, H3K4 methylation provides unique insights into the regulatory complexity of writing, reading, and erasing chromatin marks within an activated neuron. The following review will discuss H3K4 methylation and connect it to transcriptional events required for learning and memory within the developed nervous system. This will include an initial discussion of the most recent advances in the developing methodology to analyze H3K4 methylation, namely mass spectrometry and deep sequencing, as well as how these methods can be applied to more deeply understand the biology of this mark in the brain. We will then introduce the core enzymatic machinery mediating addition and removal of H3K4 methylation marks and the resulting epigenetic signatures of these marks throughout the neuronal genome. We next foray into the brain, discussing changes in H3K4 methylation marks within the hippocampus during memory formation and retrieval, as well as the behavioral correlates of H3K4 methyltransferase deficiency in this region. Finally, we discuss the human cognitive diseases connected to each H3K4 methylation modulator and summarize advances in developing drugs to target them.


Asunto(s)
Trastornos del Conocimiento/genética , Código de Histonas , Histonas/metabolismo , Memoria , Animales , Trastornos del Conocimiento/metabolismo , Histonas/química , Humanos , Metilación
8.
Curr Opin Behav Sci ; 25: 51-56, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30560153

RESUMEN

This commentary reviews the concept of experience-dependent epigenetic modifications in the CNS as a core mechanism underlying individuality and individuation at the behavioral level. I use the term individuation to refer to the underlying neurobiological processes that result in individuality, with the discussion focusing on individuality of cognitive, emotional, and behavioral repertoire. The review describes recent work supporting the concept of neuroepigenetic mechanisms underlying individuation, possible roles of transgenerational effects, and implications for precision medicine.

9.
Nurs Res ; 68(2): 145-155, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30586060

RESUMEN

BACKGROUND: Multiple cell signaling pathways are implicated in the development, progression, and persistence of cisplatin-induced peripheral neuropathy. Although advances have been made in terms of understanding specific neurotoxic mechanisms, there are few predictive factors identified that can help inform the clinician approach to symptom prevention or management. OBJECTIVE: We investigate the differential sensitivity to cisplatin-induced peripheral neuropathy and examine the contribution of dorsal root ganglion (DRG) transcriptional profiles across two inbred strains of mice. METHODS: Cisplatin (4 mg/kg intraperitoneal or vehicle control) was administered twice a week for 4 weeks to adult female C57BL/6J and A/J mice-the C57BL/6J strain of mice characterized by a robust mechanical allodynia and the A/J with a mild largely resistant allodynia phenotype. Peripheral nerve conduction velocities (NCVs), electrophysiological evaluation of wide dynamic range (WDR) neurons, morphological examination of DRG neurons, and microarray analysis of spinal cord tissues were compared across the 4 weeks. RESULTS: The A/J strain presents with an early, mild nocifensive response to cisplatin with reduced neuronal activity in WDR neurons and small changes in cross-sectional nucleus size in DRG neurons at 4 weeks. The more nocifensive-sensitive C57BL/6J strain presents with no early changes in WDR neuron responsiveness; however, there were significant changes in DRG size. Both strains demonstrate a drop in NCV after 4 weeks of treatment, with the greatest reduction present in the A/J strain. Transcriptome data implicate neuroimmune modulation in the differential response to cisplatin in the DRGs of A/J and C57BL/6J mice. DISCUSSION: Nocifensive responses in both strains implicate involvement of small myelinated and unmyelinated fibers in neurotoxic cisplatin response, whereas reductions in NCV reflect involvement of the largest myelinated fibers in the peripheral nerves. Microarray data analysis identifies neuropathy-relevant gene sets with differential activation of pathways, suggesting a role for antigen presentation in the differential neurotoxic response to cisplatin across strains. Further research is indicated to determine the relative contributions of each of these potential pathological mechanisms to both the neurotoxic response to cisplatin and to the potential for targeted therapy.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Neuralgia/fisiopatología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Receptores de Factor de Crecimiento Nervioso/metabolismo , Animales , Apoptosis/efectos de los fármacos , Ganglios Espinales/fisiopatología , Ratones , Ratones Endogámicos C57BL
10.
Neurobiol Aging ; 67: 120-127, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29656011

RESUMEN

Arterial stiffening is associated with cognitive impairment and prodromal Alzheimer's disease. This study tested the interaction between arterial stiffening and an Alzheimer's disease genetic risk factor (apolipoprotein E [APOE] genotype) on cognition among older adults. Vanderbilt Memory & Aging Project participants with normal cognition (n = 162, 72 ± 7 years, 29% APOE-ε4 carrier) and mild cognitive impairment (n = 121, 73 ± 8 years, 42% APOE-ε4 carrier) completed neuropsychological assessment and cardiac MRI to assess aortic stiffening using pulse wave velocity (PWV, m/s). Linear regression models stratified by cognitive diagnosis related aortic PWV × APOE-ε4 status to neuropsychological performances, adjusting for demographic and vascular risk factors. PWV × APOE-ε4 related to poorer performance on measures of lexical retrieval (ß = -0.29, p = 0.01), executive function (ß = -0.44, p = 0.02), and episodic memory (ß = -3.07, p = 0.02). Among participants with higher aortic PWV, APOE-ε4 modified the association between central arterial stiffening and cognition, such that carriers had worse performances than noncarriers. Findings add to a growing body of evidence for APOE-vascular interactions on cognition in older adults and warrant further research into less heart-healthy cohorts where the association between PWV and cognition among older adults might be stronger.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Apolipoproteínas E/genética , Cognición/fisiología , Estudios de Asociación Genética , Rigidez Vascular/genética , Rigidez Vascular/fisiología , Anciano , Anciano de 80 o más Años , Envejecimiento/psicología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Femenino , Genotipo , Humanos , Imagen por Resonancia Magnética , Masculino , Análisis de la Onda del Pulso , Factores de Riesgo
11.
Mol Vis ; 24: 153-164, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29463953

RESUMEN

Purpose: Epigenetic and transcriptional mechanisms have been shown to contribute to long-lasting functional changes in adult neurons. The purpose of this study was to identify any such modifications in diseased retinal tissues from a mouse model of rhodopsin mutation-associated autosomal dominant retinitis pigmentosa (ADRP), Q344X, relative to age-matched wild-type (WT) controls. Methods: We performed RNA sequencing (RNA-seq) at poly(A) selected RNA to profile the transcriptional patterns in 3-week-old ADRP mouse model rhodopsin Q344X compared to WT controls. Differentially expressed genes were determined by DESeq2 using the Benjamini & Hochberg p value adjustment and an absolute log2 fold change cutoff. Quantitative western blots were conducted to evaluate protein expression levels of histone H3 phosphorylated at serine 10 and histone H4. qRT-PCR was performed to validate the expression patterns of differentially expressed genes. Results: We observed significant differential expression in 2151 genes in the retina of Q344X mice compared to WT controls, including downregulation in the potassium channel gene, Kcnv2, and differential expression of histone genes, including the H1 family histone member, H1foo; the H3 histone family 3B, H3f3b; and the histone deacetylase 9, Hdac9. Quantitative western blots revealed statistically significant decreased protein expression of both histone H3 phosphorylated at serine 10 and histone H4 in 3-week-old Q344X retinas. Furthermore, qRT-PCR performed on select differentially expressed genes based on our RNA-seq results revealed matched expression patterns of up or downregulation. Conclusions: These findings provide evidence that transcriptomic alterations occur in the ADRP mouse model rhodopsin Q344X retina and that these processes may contribute to the dysfunction and neurodegeneration seen in this animal model.


Asunto(s)
Sustitución de Aminoácidos , Cromatina/metabolismo , Trastornos de los Cromosomas/genética , Retinitis Pigmentosa/genética , Rodopsina/genética , Transcripción Genética , Animales , Cromatina/química , Trastornos de los Cromosomas/metabolismo , Trastornos de los Cromosomas/patología , Femenino , Perfilación de la Expresión Génica , Técnicas de Sustitución del Gen , Genes Dominantes , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Rodopsina/metabolismo
12.
Front Aging Neurosci ; 9: 383, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29276487

RESUMEN

The current study employed next-generation RNA sequencing to examine gene expression differences related to brain aging, cognitive decline, and hippocampal subfields. Young and aged rats were trained on a spatial episodic memory task. Hippocampal regions CA1, CA3, and the dentate gyrus were isolated. Poly-A mRNA was examined using two different sequencing platforms, Illumina, and Ion Proton. The Illumina platform was used to generate seed lists of genes that were statistically differentially expressed across regions, ages, or in association with cognitive function. The gene lists were then retested using the data from the Ion Proton platform. The results indicate hippocampal subfield differences in gene expression and point to regional differences in vulnerability to aging. Aging was associated with increased expression of immune response-related genes, particularly in the dentate gyrus. For the memory task, impaired performance of aged animals was linked to the regulation of Ca2+ and synaptic function in region CA1. Finally, we provide a transcriptomic characterization of the three subfields regardless of age or cognitive status, highlighting and confirming a correspondence between cytoarchitectural boundaries and molecular profiling.

13.
Nature ; 551(7681): 448-449, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29168827
14.
Learn Mem ; 24(7): 278-288, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28620075

RESUMEN

Using a hippocampus-dependent contextual threat learning and memory task, we report widespread, coordinated DNA methylation changes in CA1 hippocampus of Sprague-Dawley rats specific to threat learning at genes involved in synaptic transmission. Experience-dependent alternations in gene expression and DNA methylation were observed as early as 1 h following memory acquisition and became more pronounced after 24 h. Gene ontology analysis revealed significant enrichment of functional categories related to synaptic transmission in genes that were hypomethylated at 24 h following threat learning. Integration of these data sets with previously characterized epigenetic and transcriptional changes in brain disease states suggested significant overlap between genes regulated by memory formation and genes altered in memory-related neurological and neuropsychiatric diseases. These findings provide a comprehensive resource to aid in the identification of memory-relevant therapeutic targets. Our results shed new light on the gene expression and DNA methylation changes involved in memory formation, confirming that these processes are dynamic and experience-dependent. Finally, this work provides a roadmap for future studies to identify linkage of memory-associated genes to altered disease states.


Asunto(s)
Condicionamiento Clásico/fisiología , Epigenómica/métodos , Regulación de la Expresión Génica/fisiología , Hipocampo/metabolismo , Memoria/fisiología , Animales , Islas de CpG/fisiología , Metilación de ADN/fisiología , Ontología de Genes , Masculino , Aprendizaje por Laberinto , Modelos Moleculares , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/genética , Factores de Tiempo
15.
Dialogues Clin Neurosci ; 18(3): 289-298, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27757063

RESUMEN

This review concerns epigenetic mechanisms and their roles in conferring interindividual differences, especially as related to experientially acquired and genetically driven changes in central nervous system (CNS) function. In addition, the review contains commentary regarding the possible ways in which epigenomic changes may contribute to neuropsychiatric conditions and disorders and ways in which epigenotyping might be cross-correlated with clinical phenotyping in the context of precision medicine. The review begins with a basic description of epigenetic marking in the CNS and how these changes are powerful regulators of gene readout. Means for characterizing the individual epigenotype are briefly described, with a focus on DNA cytosine methylation as a readily measurable, stable epigenetic mark. This background enables a discussion of how "epigenotyping" might be integrated along with genotyping and deep phenotyping as a means of implementing advanced precision medicine. Finally, the commentary addresses two exemplars when considering how epigenotype may correlate with and modulate cognitive and behavioral phenotype: schizophrenia and Rett syndrome. These two disorders provide an interesting compare-and-contrast example regarding possible epigenotypic regulation of behavior: whereas Rett syndrome is clearly established as being caused by disruption of the function of an epigenetic "reader" of the DNA cytosine methylome-methyl-CpG-binding protein 2 (MeCP2)-the case for a role for epigenetic mechanisms in schizophrenia is still quite speculative.


Este comentario describe los mecanismos epigenéticos y sus funciones para adjudicar diferencias interindividuales espetialmente en lo relative a los cambios en la función del sistema nervioso central (SNC) tanto adquiridos por la experiencia, como producidos genéticamente. Además, la revisión especula acerca de las posibles formas en que los cambios epigenómicos pueden contribuir a las condiciones y trastornos neuropsiquiótricos y formas en las cuales el epigenotipado pudiera estar transversalmente correlacionado con el fenotipado clínico en el contexto de la medicina de precisión. La revisión comienza con una descripción básica del marcaje epigenético en el SNC y cómo estos cambios son poderosos reguladores de la lectura génica. Se describen brevemente los medios para la caracterización del epigenotipo individual, enfocándose en la metilación de la citosina del DNA, como un marcador epigenético estable y fácil de medir. Estos antecedentes permiten una discusión acerca de cómo el "epigenotipado" podría estar integrado junto con el genotipado y el fenotipado precisos y completos como un medio para implementar una medicina de precisión avanzada. Por último, el comentario revisa dos ejemplos que consideran cómo el epigenotipo puede correlacionarse con y modular el fenotipo cognitivo y conductual: la esquizofrenia y el síndrome de Rett. Estos dos trastornos proporcionan una interesante comparación y contraste en relación con la posible regulación epigenotípica de la conducta. En el síndrome de Rett se ha establecido que esta regulación está causada por una disrupción de la función de un "lector" epigenético del metiloma de citosina del ADN, el MeCP2; en cambio, para la esquizofrenia el papel de los mecanismos epigenéticos a la fecha todavía es bastante especulativo.


Cet article s'intéresse aux mécanismes épigénétiques et à leur implication dans les différences interindividuelles, plus particulièrement lors de modifications de la fonction du système nerveux central (SNC) innées et acquises. On y trouvera également des commentaires sur les différentes façons dont les changements épigénomiques peuvent influer sur les maladies et états neuropsychiatriques et sur les façons dont l'épigénotypage peut être croisé avec le phénotypage clinique en médecine de précision. L'article décrit tout d'abord de façon élémentaire le marquage épigénétique dans le SNC et comment ces modifications sont des régulateurs puissants de la lecture des gènes. Les méthodes de caractérisation d'un épigénotype individuel sont brièvement décrites, notamment la méthylation de l'ADN, qui est un marqueur épigénétique stable et facilement mesurable. Dans ce contexte, il est discuté de la façon dont « l'épigénotypage ¼ pourrait participer avec un génotypage et un phénotypage précis et complet à l'amélioration de la médecine de précision avancée. Enfin, le commentaire aborde la schizophrénie et le syndrome de Rett comme deux exemples de la façon dont l'épigénotypage peut correspondre au et moduler le phénotype comportemental et cognitif. Ces deux troubles représentent un exemple intéressant de comparaison des régulations épigénotypiques possibles du comportement: une mutation d'un « lecteur¼ épigénétique du méthylome cytosine de l'ADN - gène MeCP2 (methyl-CpG-binding protein 2) - est connue pour entraîner le syndrome de Rett alors que le rôle de mécanismes épigénétiques dans la schizophrénie est encore purement théorique.


Asunto(s)
Epigénesis Genética/genética , Síndrome de Rett/genética , Esquizofrenia/genética , Encéfalo/fisiopatología , Epigenómica , Humanos , Síndrome de Rett/fisiopatología , Esquizofrenia/fisiopatología
16.
Cell Rep ; 16(10): 2666-2685, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27568567

RESUMEN

Human haploinsufficiency of the transcription factor Tcf4 leads to a rare autism spectrum disorder called Pitt-Hopkins syndrome (PTHS), which is associated with severe language impairment and development delay. Here, we demonstrate that Tcf4 haploinsufficient mice have deficits in social interaction, ultrasonic vocalization, prepulse inhibition, and spatial and associative learning and memory. Despite learning deficits, Tcf4(+/-) mice have enhanced long-term potentiation in the CA1 area of the hippocampus. In translationally oriented studies, we found that small-molecule HDAC inhibitors normalized hippocampal LTP and memory recall. A comprehensive set of next-generation sequencing experiments of hippocampal mRNA and methylated DNA isolated from Tcf4-deficient and WT mice before or shortly after experiential learning, with or without administration of vorinostat, identified "memory-associated" genes modulated by HDAC inhibition and dysregulated by Tcf4 haploinsufficiency. Finally, we observed that Hdac2 isoform-selective knockdown was sufficient to rescue memory deficits in Tcf4(+/-) mice.


Asunto(s)
Metilación de ADN/genética , Memoria , Plasticidad Neuronal/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Animales , Trastorno Autístico/complicaciones , Trastorno Autístico/patología , Trastorno Autístico/fisiopatología , Islas de CpG/genética , Metilación de ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Facies , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Histona Desacetilasa 2/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Hiperventilación/complicaciones , Hiperventilación/genética , Hiperventilación/patología , Hiperventilación/fisiopatología , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Discapacidad Intelectual/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Inhibición Prepulso/efectos de los fármacos , Proteína 2 Similar al Factor de Transcripción 7/genética , Transcripción Genética/efectos de los fármacos , Vorinostat
17.
Sci Signal ; 9(442): ra83, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27555660

RESUMEN

Epigenetic modifications, such as DNA cytosine methylation, contribute to the mechanisms underlying learning and memory by coordinating adaptive gene expression and neuronal plasticity. Transcription-dependent plasticity regulated by DNA methylation includes synaptic plasticity and homeostatic synaptic scaling. Memory-related plasticity also includes alterations in intrinsic membrane excitability mediated by changes in the abundance or activity of ion channels in the plasma membrane, which sets the threshold for action potential generation. We found that prolonged inhibition of DNA methyltransferase (DNMT) activity increased intrinsic membrane excitability of cultured cortical pyramidal neurons. Knockdown of the cytosine demethylase TET1 or inhibition of RNA polymerase blocked the increased membrane excitability caused by DNMT inhibition, suggesting that this effect was mediated by subsequent cytosine demethylation and de novo transcription. Prolonged DNMT inhibition blunted the medium component of the after-hyperpolarization potential, an effect that would increase neuronal excitability, and was associated with reduced expression of the genes encoding small-conductance Ca(2+)-activated K(+) (SK) channels. Furthermore, the specific SK channel blocker apamin increased neuronal excitability but was ineffective after DNMT inhibition. Our results suggested that DNMT inhibition enables transcriptional changes that culminate in decreased expression of SK channel-encoding genes and decreased activity of SK channels, thus providing a mechanism for the regulation of neuronal intrinsic membrane excitability by dynamic DNA cytosine methylation. This study has implications for human neurological and psychiatric diseases associated with dysregulated intrinsic excitability.


Asunto(s)
Metilación de ADN/fisiología , Epigénesis Genética/fisiología , Potenciales de la Membrana/fisiología , Células Piramidales/metabolismo , Animales , Apamina/farmacología , Línea Celular , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Humanos , Potenciales de la Membrana/efectos de los fármacos , Células Piramidales/citología , Ratas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
18.
19.
Nat Commun ; 7: 12091, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27384705

RESUMEN

Epigenetic mechanisms such as DNA methylation are essential regulators of the function and information storage capacity of neurons. DNA methylation is highly dynamic in the developing and adult brain, and is actively regulated by neuronal activity and behavioural experiences. However, it is presently unclear how methylation status at individual genes is targeted for modification. Here, we report that extra-coding RNAs (ecRNAs) interact with DNA methyltransferases and regulate neuronal DNA methylation. Expression of ecRNA species is associated with gene promoter hypomethylation, is altered by neuronal activity, and is overrepresented at genes involved in neuronal function. Knockdown of the Fos ecRNA locus results in gene hypermethylation and mRNA silencing, and hippocampal expression of Fos ecRNA is required for long-term fear memory formation in rats. These results suggest that ecRNAs are fundamental regulators of DNA methylation patterns in neuronal systems, and reveal a promising avenue for therapeutic targeting in neuropsychiatric disease states.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Metilación de ADN , Epigénesis Genética , Neuronas/metabolismo , Proteínas Oncogénicas v-fos/genética , ARN Mensajero/genética , Animales , Región CA1 Hipocampal/citología , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Islas de CpG , Miedo/fisiología , Humanos , Inyecciones Intraventriculares , Masculino , Neuronas/citología , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Proteínas Oncogénicas v-fos/antagonistas & inhibidores , Proteínas Oncogénicas v-fos/metabolismo , Cultivo Primario de Células , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Técnicas Estereotáxicas
20.
Sci Signal ; 9(425): fs7, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27117249

RESUMEN

Sleep deprivation is well established to cause diminution of cognitive function, including disruption of both minute-to-minute working memory and decrements in the stabilization of long-term memories. Moreover, "replay" during sleep of episodes and sequences of events that were experienced during wakefulness has been implicated in consolidation of long-term memories. However, the molecular mechanisms underlying the role of sleep in memory function are just starting to be defined. In this issue of Science Signaling, Tudor et al identify one molecular component underlying the effects of sleep on memory function: dynamic experience-dependent regulation of protein synthesis in the hippocampus.


Asunto(s)
Neurobiología , Privación de Sueño , Encéfalo , Hipocampo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Memoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...