Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Alzheimers Dement ; 19(2): 391-404, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35416404

RESUMEN

We propose the hypothesis that small high-density lipoprotein (HDL) particles reduce the risk of Alzheimer's disease (AD) by virtue of their capacity to exchange lipids, affecting neuronal membrane composition and vascular and synaptic functions. Concentrations of small HDLs in cerebrospinal fluid (CSF) and plasma were measured in 180 individuals ≥60 years of age using ion mobility methodology. Small HDL concentrations in CSF were positively associated with performance in three domains of cognitive function independent of apolipoprotein E (APOE) ε4 status, age, sex, and years of education. Moreover, there was a significant correlation between levels of small HDLs in CSF and plasma. Further studies will be aimed at determining whether specific components of small HDL exchange across the blood, brain, and CSF barriers, and developing approaches to exploit small HDLs for therapeutic purposes.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Apolipoproteínas E , Apolipoproteína E4 , Encéfalo , Cognición , Péptidos beta-Amiloides/líquido cefalorraquídeo
2.
Front Cell Neurosci ; 16: 1078919, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523817

RESUMEN

[This corrects the article DOI: 10.3389/fncel.2020.00027.].

3.
Headache ; 61(3): 536-545, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33724462

RESUMEN

OBJECTIVE: Our objective is to explore whether blood-cerebrospinal fluid (CSF) barrier biomarkers differ in episodic migraine (EM) or chronic migraine (CM) from controls. BACKGROUND: Reports of blood-brain barrier and blood-cerebrospinal fluid barrier (BCSFB) disruption in migraine vary. Our hypothesis is that investigation of biomarkers associated with blood, CSF, brain, cell adhesion, and inflammation will help elucidate migraine pathophysiology. METHODS: We recruited 14 control volunteers without headache disorders and 42 individuals with EM or CM as classified using the International Classification of Headache Disorders, 3rd edition, criteria in a cross-sectional study located at our Pasadena and Stanford headache research centers in California. Blood and lumbar CSF samples were collected once from those diagnosed with CM or those with EM during two states: during a typical migraine, before rescue therapy, with at least 6/10 level of pain (ictal); and when migraine free for at least 48 h (interictal). The average number of headaches per month over the previous year was estimated by those with EM; this enabled comparison of biomarker changes between controls and three headache frequency groups: <2 per month, 2-14 per month, and CM. Blood and CSF biomarkers were determined using antibody-based methods. RESULTS: Antimigraine medication was only taken by the EM and CM groups. Compared to controls, the migraine group had significantly higher mean CSF-blood quotients of albumin (Qalb : mean ± standard deviation (SD): 5.6 ± 2.3 vs. 4.1 ± 1.9) and fibrinogen (Qfib mean ± SD: 1615 ± 99.0 vs. 86.1 ± 55.0). Mean CSF but not plasma soluble vascular cell adhesion molecule-1 (sVCAM-1) levels were significantly higher in those with more frequent migraine: (4.5 ng/mL ± 1.1 in those with <2 headache days a month; 5.5 ± 1.9 with 2-14 days a month; and 7.1 ± 2.9 in CM), while the Qfib ratio was inversely related to headache frequency. We did not find any difference in individuals with EM or CM from controls for CSF cell count, total protein, matrix metalloproteinase-9, soluble platelet-derived growth factor receptor ß, tumor necrosis factor-alpha, interferon-gamma, interleukin (IL)-6, IL-8, IL-10, or C-reactive protein. CONCLUSIONS: The higher Qalb and Qfib ratios may indicate that the transport of these blood-derived proteins is disturbed at the BCSFB in persons with migraine. These changes most likely occur at the choroid plexus epithelium, as there are no signs of typical endothelial barrier disruption. The most striking finding in this hypothesis-generating study of migraine pathophysiology is that sVCAM-1 levels in CSF may be a biomarker of higher frequency of migraine and CM. An effect from migraine medications cannot be excluded, but there is no known mechanism to suggest they have a role in altering the CSF biomarkers.


Asunto(s)
Barrera Hematoencefálica , Fibrinógeno/líquido cefalorraquídeo , Inflamación , Trastornos Migrañosos , Molécula 1 de Adhesión Celular Vascular/líquido cefalorraquídeo , Adulto , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Estudios Transversales , Femenino , Humanos , Inflamación/sangre , Inflamación/líquido cefalorraquídeo , Inflamación/inmunología , Masculino , Persona de Mediana Edad , Trastornos Migrañosos/sangre , Trastornos Migrañosos/líquido cefalorraquídeo , Trastornos Migrañosos/fisiopatología
4.
Brain Behav Immun ; 94: 299-307, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33486003

RESUMEN

CNS inflammation is a key factor in Alzheimer's Disease (AD), but its relation to pathological Aß, tau, and APOE4 is poorly understood, particularly prior to the onset of cognitive symptoms. To better characterize early relationships between inflammation, APOE4, and AD pathology, we assessed correlations between cerebrospinal fluid (CSF) inflammatory markers and brain levels of Aß and tau in cognitively normal older adults. Each participant received a lumbar puncture to collect and quantify CSF levels of TNFα, IL-6, IL-8, and IL-10, a T1-weighted MRI, and PET scanning with [18F]flortaucipir (FTP; n = 57), which binds to tau tangles and/or [18F]florbetapir (FBP; n = 58), which binds to Aß. Parallel voxelwise regressions assessed relationships between each CSF inflammatory marker and FTP and FBP SUVR, as well as APOE4*CSF inflammation interactions. Unexpectedly, we detected significant negative associations between regional Aß and tau PET uptake and CSF inflammatory markers. For Aß PET, we detected negative associations with CSF IL-6 and IL-8 in regions known to show early accumulation of Aß (i.e. lateral and medial frontal lobes). For tau PET, negative relationships were observed with CSF TNFα and IL-8, predominantly in regions known to exhibit early tau accumulation (i.e. medial temporal lobe). In subsequent analyses, significant interactions between APOE4 status and IL-8 on Aß and tau PET levels were observed in spatially distinct regions from those showing CSF-Aß/tau relationships. Results from the current cross-sectional study support previous findings that neuroinflammation may be protective against AD pathology at a given stage of the disease, and extend these findings to a cognitively normal aging population. This study provides new insight into a dynamic relationship between neuroinflammation and AD pathology and may have implications for whom and when neuroinflammatory therapies may be appropriate.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Estudios Transversales , Humanos , Tomografía de Emisión de Positrones , Proteínas tau
5.
Nature ; 581(7806): 71-76, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32376954

RESUMEN

Vascular contributions to dementia and Alzheimer's disease are increasingly recognized1-6. Recent studies have suggested that breakdown of the blood-brain barrier (BBB) is an early biomarker of human cognitive dysfunction7, including the early clinical stages of Alzheimer's disease5,8-10. The E4 variant of apolipoprotein E (APOE4), the main susceptibility gene for Alzheimer's disease11-14, leads to accelerated breakdown of the BBB and degeneration of brain capillary pericytes15-19, which maintain BBB integrity20-22. It is unclear, however, whether the cerebrovascular effects of APOE4 contribute to cognitive impairment. Here we show that individuals bearing APOE4 (with the ε3/ε4 or ε4/ε4 alleles) are distinguished from those without APOE4 (ε3/ε3) by breakdown of the BBB in the hippocampus and medial temporal lobe. This finding is apparent in cognitively unimpaired APOE4 carriers and more severe in those with cognitive impairment, but is not related to amyloid-ß or tau pathology measured in cerebrospinal fluid or by positron emission tomography23. High baseline levels of the BBB pericyte injury biomarker soluble PDGFRß7,8 in the cerebrospinal fluid predicted future cognitive decline in APOE4 carriers but not in non-carriers, even after controlling for amyloid-ß and tau status, and were correlated with increased activity of the BBB-degrading cyclophilin A-matrix metalloproteinase-9 pathway19 in cerebrospinal fluid. Our findings suggest that breakdown of the BBB contributes to APOE4-associated cognitive decline independently of Alzheimer's disease pathology, and might be a therapeutic target in APOE4 carriers.


Asunto(s)
Apolipoproteína E4/genética , Barrera Hematoencefálica/patología , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Alelos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Capilares/patología , Ciclofilina A/líquido cefalorraquídeo , Ciclofilina A/metabolismo , Femenino , Heterocigoto , Hipocampo/irrigación sanguínea , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/líquido cefalorraquídeo , Metaloproteinasa 9 de la Matriz/metabolismo , Giro Parahipocampal/irrigación sanguínea , Pericitos/patología , Tomografía de Emisión de Positrones , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/líquido cefalorraquídeo , Lóbulo Temporal/irrigación sanguínea , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/metabolismo
6.
Alzheimers Dement ; 16(6): 821-830, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32301266

RESUMEN

INTRODUCTION: Blood-brain barrier (BBB) breakdown and loss of brain capillary pericytes contributes to cognitive impairment. Pericytes express platelet-derived growth factor receptor-ß (PDGFRß) that regulates brain angiogenesis and blood vessel stability. Elevated soluble PDGFRß (sPDGFRß) levels in cerebrospinal fluid (CSF) indicate pericyte injury and BBB breakdown, which is an early biomarker of human cognitive dysfunction. METHODS: A combination of reagents and conditions were tested, optimized, and validated on the Meso Scale Discovery electrochemiluminescence platform to develop a new sPDGFRß immunoassay that was used to measure sPDGFRß in human CSF from 147 individuals. RESULTS: We developed standard operating procedures for a highly sensitive and reproducible sPDGFRß immunoassay with a dynamic range from 100 to 26,000 pg/mL, and confirmed elevated CSF sPDGFRß levels in individuals with cognitive dysfunction. DISCUSSION: This assay could be applied at different laboratories to study brain pericytes and microvascular damage in relation to cognition in disorders associated with neurovascular and cognitive dysfunction.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Disfunción Cognitiva/diagnóstico , Pericitos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Barrera Hematoencefálica/patología , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/patología , Humanos , Pericitos/patología , Sensibilidad y Especificidad
7.
Front Cell Neurosci ; 14: 27, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116568

RESUMEN

Pericytes are perivascular mural cells that enwrap brain capillaries and maintain blood-brain barrier (BBB) integrity. Most studies suggest that pericytes regulate cerebral blood flow (CBF) and oxygen delivery to activated brain structures, known as neurovascular coupling. While we have previously shown that congenital loss of pericytes leads over time to aberrant hemodynamic responses, the effects of acute global pericyte loss on neurovascular coupling have not been studied. To address this, we used our recently reported inducible pericyte-specific Cre mouse line crossed to iDTR mice carrying Cre-dependent human diphtheria toxin (DT) receptor, which upon DT treatment leads to acute pericyte ablation. As expected, DT led to rapid progressive loss of pericyte coverage of cortical capillaries up to 50% at 3 days post-DT, which correlated with approximately 50% reductions in stimulus-induced CBF responses measured with laser doppler flowmetry (LDF) and/or intrinsic optical signal (IOS) imaging. Endothelial response to acetylcholine, microvascular density, and neuronal evoked membrane potential responses remained, however, unchanged, as well as arteriolar smooth muscle cell (SMC) coverage and functional responses to adenosine, as we previously reported. Together, these data suggest that neurovascular uncoupling in this model is driven by pericyte loss, but not other vascular deficits or neuronal dysfunction. These results further support the role of pericytes in CBF regulation and may have implications for neurological conditions associated with rapid pericyte loss such as hypoperfusion and stroke, as well as conditions where the exact time course of global regional pericyte loss is less clear, such as Alzheimer's disease (AD) and other neurogenerative disorders.

8.
Neurobiol Aging ; 86: 112-122, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31870643

RESUMEN

It is now recognized that understanding how neuroinflammation affects brain function may provide new insights into Alzheimer's pathophysiology. Tumor necrosis factor (TNF)-α, an inflammatory cytokine marker, has been implicated in Alzheimer's disease (AD), as it can impair neuronal function through suppression of long-term potentiation. Our study investigated the relationship between cerebrospinal fluid TNF-α and functional connectivity (FC) in a cohort of 64 older adults (µ age = 69.76 years; 30 cognitively normal, 34 mild AD). Higher cerebrospinal fluid TNF-α levels were associated with lower FC among brain regions important for high-level decision-making, inhibitory control, and memory. This effect was moderated by apolipoprotein E-ε4 (APOE4) status. Graph theory metrics revealed there were significant differences between APOE4 carriers at the node level, and by diagnosis at the network level suggesting global brain network dysfunction in participants with AD. These findings suggest proinflammatory mechanisms may contribute to reduced FC in regions important for high-level cognition. Future studies are needed to understand the role of inflammation on brain function and clinical progression, especially in APOE4 carriers.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Apolipoproteína E4 , Encéfalo/fisiopatología , Función Ejecutiva , Heterocigoto , Factor de Necrosis Tumoral alfa/líquido cefalorraquídeo , Anciano , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Inflamación , Imagen por Resonancia Magnética , Masculino
9.
Alzheimers Dement ; 15(12): 1568-1575, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31862169

RESUMEN

INTRODUCTION: Blood-brain barrier (BBB) breakdown is an early independent biomarker of human cognitive dysfunction, as found using gadolinium (Gd) as a contrast agent. Whether Gd accumulates in brains of individuals with an age-dependent BBB breakdown and/or mild cognitive impairment remains unclear. METHODS: We analyzed T1-weighted magnetic resonance imaging (MRI) scans from 52 older participants with BBB breakdown in the hippocampus 19-28 months after either cyclic or linear Gd agent. RESULTS: There was no change in T1-weighted signal intensity between the baseline contrast MRI and unenhanced MRI on re-examination in any of the studied 10 brain regions with either Gd agent suggesting undetectable Gd brain retention. DISCUSSION: Gd does not accumulate in brains of older individuals with a BBB breakdown in the hippocampus. Thus, Gd agents can be used without risk of brain retention within a ∼2-year follow-up to study BBB in the aging human brain in relation to cognition and/or other pathologies.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Disfunción Cognitiva/patología , Gadolinio , Hipocampo/patología , Imagen por Resonancia Magnética , Adulto , Anciano , Encéfalo/patología , Medios de Contraste/administración & dosificación , Femenino , Gadolinio/análisis , Gadolinio/uso terapéutico , Humanos , Masculino , Pruebas Neuropsicológicas/estadística & datos numéricos
10.
Int J Stroke ; : 1747493019871915, 2019 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-31543058

RESUMEN

The incidence of stroke and dementia are diverging across the world, rising for those in low-and middle-income countries and falling in those in high-income countries. This suggests that whatever factors cause these trends are potentially modifiable. At the population level, neurological disorders as a group account for the largest proportion of disability-adjusted life years globally (10%). Among neurological disorders, stroke (42%) and dementia (10%) dominate. Stroke and dementia confer risks for each other and share some of the same, largely modifiable, risk and protective factors. In principle, 90% of strokes and 35% of dementias have been estimated to be preventable. Because a stroke doubles the chance of developing dementia and stroke is more common than dementia, more than a third of dementias could be prevented by preventing stroke. Developments at the pathological, pathophysiological, and clinical level also point to new directions. Growing understanding of brain pathophysiology has unveiled the reciprocal interaction of cerebrovascular disease and neurodegeneration identifying new therapeutic targets to include protection of the endothelium, the blood-brain barrier, and other components of the neurovascular unit. In addition, targeting amyloid angiopathy aspects of inflammation and genetic manipulation hold new testable promise. In the meantime, accumulating evidence suggests that whole populations experiencing improved education, and lower vascular risk factor profiles (e.g., reduced prevalence of smoking) and vascular disease, including stroke, have better cognitive function and lower dementia rates. At the individual levels, trials have demonstrated that anticoagulation of atrial fibrillation can reduce the risk of dementia by 48% and that systolic blood pressure lower than 140 mmHg may be better for the brain. Based on these considerations, the World Stroke Organization has issued a proclamation, endorsed by all the major international organizations focused on global brain and cardiovascular health, calling for the joint prevention of stroke and dementia. This article summarizes the evidence for translation into action. © 2019 the Alzheimer's Association and the World Stroke Organisation. Published by Elsevier Inc. All rights reserved.

11.
Alzheimers Dement ; 15(7): 961-984, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31327392

RESUMEN

The incidence of stroke and dementia are diverging across the world, rising for those in low- and middle-income countries and falling in those in high-income countries. This suggests that whatever factors cause these trends are potentially modifiable. At the population level, neurological disorders as a group account for the largest proportion of disability-adjusted life years globally (10%). Among neurological disorders, stroke (42%) and dementia (10%) dominate. Stroke and dementia confer risks for each other and share some of the same, largely modifiable, risk and protective factors. In principle, 90% of strokes and 35% of dementias have been estimated to be preventable. Because a stroke doubles the chance of developing dementia and stroke is more common than dementia, more than a third of dementias could be prevented by preventing stroke. Developments at the pathological, pathophysiological, and clinical level also point to new directions. Growing understanding of brain pathophysiology has unveiled the reciprocal interaction of cerebrovascular disease and neurodegeneration identifying new therapeutic targets to include protection of the endothelium, the blood-brain barrier, and other components of the neurovascular unit. In addition, targeting amyloid angiopathy aspects of inflammation and genetic manipulation hold new testable promise. In the meantime, accumulating evidence suggests that whole populations experiencing improved education, and lower vascular risk factor profiles (e.g., reduced prevalence of smoking) and vascular disease, including stroke, have better cognitive function and lower dementia rates. At the individual levels, trials have demonstrated that anticoagulation of atrial fibrillation can reduce the risk of dementia by 48% and that systolic blood pressure lower than 140 mmHg may be better for the brain. Based on these considerations, the World Stroke Organization has issued a proclamation, endorsed by all the major international organizations focused on global brain and cardiovascular health, calling for the joint prevention of stroke and dementia. This article summarizes the evidence for translation into action.


Asunto(s)
Fibrilación Atrial/diagnóstico , Encéfalo/fisiopatología , Demencia/prevención & control , Hipertensión/diagnóstico , Accidente Cerebrovascular/prevención & control , Fibrilación Atrial/tratamiento farmacológico , Barrera Hematoencefálica , Trastornos Cerebrovasculares/fisiopatología , Demencia/epidemiología , Salud Global , Humanos , Hipertensión/tratamiento farmacológico , Incidencia , Accidente Cerebrovascular/epidemiología
12.
Nat Neurosci ; 22(7): 1089-1098, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31235908

RESUMEN

Pericytes are positioned between brain capillary endothelial cells, astrocytes and neurons. They degenerate in multiple neurological disorders. However, their role in the pathogenesis of these disorders remains debatable. Here we generate an inducible pericyte-specific Cre line and cross pericyte-specific Cre mice with iDTR mice carrying Cre-dependent human diphtheria toxin receptor. After pericyte ablation with diphtheria toxin, mice showed acute blood-brain barrier breakdown, severe loss of blood flow, and a rapid neuron loss that was associated with loss of pericyte-derived pleiotrophin (PTN), a neurotrophic growth factor. Intracerebroventricular PTN infusions prevented neuron loss in pericyte-ablated mice despite persistent circulatory changes. Silencing of pericyte-derived Ptn rendered neurons vulnerable to ischemic and excitotoxic injury. Our data demonstrate a rapid neurodegeneration cascade that links pericyte loss to acute circulatory collapse and loss of PTN neurotrophic support. These findings may have implications for the pathogenesis and treatment of neurological disorders that are associated with pericyte loss and/or neurovascular dysfunction.


Asunto(s)
Proteínas Portadoras/fisiología , Citocinas/fisiología , Degeneración Nerviosa/fisiopatología , Proteínas del Tejido Nervioso/fisiología , Neuronas/patología , Pericitos/fisiología , Choque/fisiopatología , Animales , Isquemia Encefálica/fisiopatología , Capilares/fisiopatología , Proteínas Portadoras/uso terapéutico , Células Cultivadas , Circulación Cerebrovascular/fisiología , Citocinas/deficiencia , Citocinas/uso terapéutico , Células Endoteliales/citología , Femenino , Genes Reporteros , Infusiones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/tratamiento farmacológico , Neuroglía/metabolismo , Neuronas/metabolismo , Neurotoxinas/toxicidad , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/metabolismo , Choque/metabolismo , Choque/patología
13.
Nat Med ; 25(2): 270-276, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643288

RESUMEN

Vascular contributions to cognitive impairment are increasingly recognized1-5 as shown by neuropathological6,7, neuroimaging4,8-11, and cerebrospinal fluid biomarker4,12 studies. Moreover, small vessel disease of the brain has been estimated to contribute to approximately 50% of all dementias worldwide, including those caused by Alzheimer's disease (AD)3,4,13. Vascular changes in AD have been typically attributed to the vasoactive and/or vasculotoxic effects of amyloid-ß (Aß)3,11,14, and more recently tau15. Animal studies suggest that Aß and tau lead to blood vessel abnormalities and blood-brain barrier (BBB) breakdown14-16. Although neurovascular dysfunction3,11 and BBB breakdown develop early in AD1,4,5,8-10,12,13, how they relate to changes in the AD classical biomarkers Aß and tau, which also develop before dementia17, remains unknown. To address this question, we studied brain capillary damage using a novel cerebrospinal fluid biomarker of BBB-associated capillary mural cell pericyte, soluble platelet-derived growth factor receptor-ß8,18, and regional BBB permeability using dynamic contrast-enhanced magnetic resonance imaging8-10. Our data show that individuals with early cognitive dysfunction develop brain capillary damage and BBB breakdown in the hippocampus irrespective of Alzheimer's Aß and/or tau biomarker changes, suggesting that BBB breakdown is an early biomarker of human cognitive dysfunction independent of Aß and tau.


Asunto(s)
Biomarcadores/metabolismo , Barrera Hematoencefálica/patología , Disfunción Cognitiva/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo , Humanos , Imagenología Tridimensional , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo
14.
Alzheimers Dement ; 15(1): 158-167, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30642436

RESUMEN

Increasing evidence recognizes Alzheimer's disease (AD) as a multifactorial and heterogeneous disease with multiple contributors to its pathophysiology, including vascular dysfunction. The recently updated AD Research Framework put forth by the National Institute on Aging-Alzheimer's Association describes a biomarker-based pathologic definition of AD focused on amyloid, tau, and neuronal injury. In response to this article, here we first discussed evidence that vascular dysfunction is an important early event in AD pathophysiology. Next, we examined various imaging sequences that could be easily implemented to evaluate different types of vascular dysfunction associated with, and/or contributing to, AD pathophysiology, including changes in blood-brain barrier integrity and cerebral blood flow. Vascular imaging biomarkers of small vessel disease of the brain, which is responsible for >50% of dementia worldwide, including AD, are already established, well characterized, and easy to recognize. We suggest that these vascular biomarkers should be incorporated into the AD Research Framework to gain a better understanding of AD pathophysiology and aid in treatment efforts.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Biomarcadores , Enfermedades Vasculares/fisiopatología , Sustancia Blanca/patología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/patología , Circulación Cerebrovascular/fisiología , Humanos , National Institute on Aging (U.S.) , Estados Unidos
15.
Trends Mol Med ; 25(2): 74-76, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30661727

RESUMEN

Recent studies revealed that cellular prion protein on neurons bind Alzheimer's amyloid-ß oligomers, causing neurotoxic effects. A new article in Cell Reports by Gunther and colleagues (Cell Rep. 2019; 26:145-158) shows that an orally administered cellular prion protein antagonist can rescue synaptic and cognitive deficits in Alzheimer's mice overexpressing amyloid-ß.

16.
Physiol Rev ; 99(1): 21-78, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30280653

RESUMEN

The blood-brain barrier (BBB) prevents neurotoxic plasma components, blood cells, and pathogens from entering the brain. At the same time, the BBB regulates transport of molecules into and out of the central nervous system (CNS), which maintains tightly controlled chemical composition of the neuronal milieu that is required for proper neuronal functioning. In this review, we first examine molecular and cellular mechanisms underlying the establishment of the BBB. Then, we focus on BBB transport physiology, endothelial and pericyte transporters, and perivascular and paravascular transport. Next, we discuss rare human monogenic neurological disorders with the primary genetic defect in BBB-associated cells demonstrating the link between BBB breakdown and neurodegeneration. Then, we review the effects of genes underlying inheritance and/or increased susceptibility for Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and amyotrophic lateral sclerosis (ALS) on BBB in relation to other pathologies and neurological deficits. We next examine how BBB dysfunction relates to neurological deficits and other pathologies in the majority of sporadic AD, PD, and ALS cases, multiple sclerosis, other neurodegenerative disorders, and acute CNS disorders such as stroke, traumatic brain injury, spinal cord injury, and epilepsy. Lastly, we discuss BBB-based therapeutic opportunities. We conclude with lessons learned and future directions, with emphasis on technological advances to investigate the BBB functions in the living human brain, and at the molecular and cellular level, and address key unanswered questions.


Asunto(s)
Transporte Biológico/fisiología , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/fisiopatología , Sistema Nervioso Central/fisiopatología , Enfermedades Neurodegenerativas/patología , Animales , Sistema Nervioso Central/patología , Humanos , Proteínas de Transporte de Membrana/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/patología
17.
Nat Neurosci ; 21(10): 1318-1331, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30250261

RESUMEN

Adequate supply of blood and structural and functional integrity of blood vessels are key to normal brain functioning. On the other hand, cerebral blood flow shortfalls and blood-brain barrier dysfunction are early findings in neurodegenerative disorders in humans and animal models. Here we first examine molecular definition of cerebral blood vessels, as well as pathways regulating cerebral blood flow and blood-brain barrier integrity. Then we examine the role of cerebral blood flow and blood-brain barrier in the pathogenesis of Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. We focus on Alzheimer's disease as a platform of our analysis because more is known about neurovascular dysfunction in this disease than in other neurodegenerative disorders. Finally, we propose a hypothetical model of Alzheimer's disease biomarkers to include brain vasculature as a factor contributing to the disease onset and progression, and we suggest a common pathway linking brain vascular contributions to neurodegeneration in multiple neurodegenerative disorders.


Asunto(s)
Vasos Sanguíneos/patología , Vasos Sanguíneos/fisiopatología , Encéfalo/patología , Enfermedades Neurodegenerativas/patología , Animales , Humanos
19.
Nat Protoc ; 13(6): 1377-1402, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29844521

RESUMEN

Cerebrovascular dysfunction has an important role in the pathogenesis of multiple brain disorders. Measurement of hemodynamic responses in vivo can be challenging, particularly as techniques are often not described in sufficient detail and vary between laboratories. We present a set of standardized in vivo protocols that describe high-resolution two-photon microscopy and intrinsic optical signal (IOS) imaging to evaluate capillary and arteriolar responses to a stimulus, regional hemodynamic responses, and oxygen delivery to the brain. The protocol also describes how to measure intrinsic NADH fluorescence to understand how blood O2 supply meets the metabolic demands of activated brain tissue, and to perform resting-state absolute oxygen partial pressure (pO2) measurements of brain tissue. These methods can detect cerebrovascular changes at far higher resolution than MRI techniques, although the optical nature of these techniques limits their achievable imaging depths. Each individual procedure requires 1-2 h to complete, with two to three procedures typically performed per animal at a time. These protocols are broadly applicable in studies of cerebrovascular function in healthy and diseased brain in any of the existing mouse models of neurological and vascular disorders. All these procedures can be accomplished by a competent graduate student or experienced technician, except the two-photon measurement of absolute pO2 level, which is better suited to a more experienced, postdoctoral-level researcher.


Asunto(s)
Circulación Cerebrovascular/fisiología , Trastornos Cerebrovasculares/diagnóstico por imagen , Trastornos Cerebrovasculares/patología , Hemodinámica , Hipoxia/diagnóstico por imagen , Hipoxia/patología , Microscopía Intravital/métodos , Animales , Microscopía Intravital/normas , Ratones
20.
Nat Rev Neurol ; 14(3): 133-150, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29377008

RESUMEN

The blood-brain barrier (BBB) is a continuous endothelial membrane within brain microvessels that has sealed cell-to-cell contacts and is sheathed by mural vascular cells and perivascular astrocyte end-feet. The BBB protects neurons from factors present in the systemic circulation and maintains the highly regulated CNS internal milieu, which is required for proper synaptic and neuronal functioning. BBB disruption allows influx into the brain of neurotoxic blood-derived debris, cells and microbial pathogens and is associated with inflammatory and immune responses, which can initiate multiple pathways of neurodegeneration. This Review discusses neuroimaging studies in the living human brain and post-mortem tissue as well as biomarker studies demonstrating BBB breakdown in Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, HIV-1-associated dementia and chronic traumatic encephalopathy. The pathogenic mechanisms by which BBB breakdown leads to neuronal injury, synaptic dysfunction, loss of neuronal connectivity and neurodegeneration are described. The importance of a healthy BBB for therapeutic drug delivery and the adverse effects of disease-initiated, pathological BBB breakdown in relation to brain delivery of neuropharmaceuticals are briefly discussed. Finally, future directions, gaps in the field and opportunities to control the course of neurological diseases by targeting the BBB are presented.


Asunto(s)
Barrera Hematoencefálica , Enfermedades Neurodegenerativas , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/fisiopatología , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...