Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 45(12): 8967-8987, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37138143

RESUMEN

Soil plays a key role in ecosphere and air quality regulation. Obsolete environmental technologies lead to soil quality loss, air, water, and land systems pollution. Pedosphere and plants are intertwined with the air quality. Ionized O2 is capable to intensify atmosphere turbulence, providing particulate matter (PM2.5) coalescence and dry deposition. Addressing environmental quality, a Biogeosystem Technique (BGT*) heuristic transcendental (nonstandard and not direct imitation of nature) methodology has been developed. A BGT* main focus is an enrichment of Earth's biogeochemical cycles through land use and air cleaning. An intra-soil processing, which provides the soil multilevel architecture, is one of the BGT* ingredients. A next BGT* implementation is intra-soil pulse continuously discrete watering for optimal soil water regime and freshwater saving up to 10-20 times. The BGT* comprises intra-soil dispersed environmentally safe recycling of the PM sediments, heavy metals (HMs) and other pollutants, controlling biofilm-mediated microbial community interactions in the soil. This provides abundant biogeochemical cycle formation and better functioning of the humic substances, biological preparation, and microbial biofilms as a soil-biological starter, ensuring priority plants and trees nutrition, growth and resistance to phytopathogens. A higher underground and aboveground soil biological product increases a reversible C biological sequestration from the atmosphere. An additional light O2 ions photosynthetic production ensures a PM2.5 and PM0.1 coalescence and strengthens an intra-soil transformation of PM sediments into nutrients and improves atmosphere quality. The BGT* provides PM and HMs intra-soil passivation, increases soil biological productivity, stabilizes a climate system of the earth and promotes a green circular economy.


Asunto(s)
Contaminación del Aire , Metales Pesados , Suelo , Contaminación del Aire/análisis , Metales Pesados/análisis , Material Particulado/análisis , Plantas , Agua
2.
Environ Res ; 194: 110605, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33316230

RESUMEN

The Kastanozem complex in the dry steppe of southern Russia underlies an artificially-constructed forest strips. Deep ploughing to a depth of 45 cm was used to process the soil prior to planting. Between 20 and 40 cm depth, soil density was high, 1.57 t m-3. Soil hardness was also high, 440 psi. Soil aggregates greater than 5 cm in size were impermeable to tree roots. The content of such aggregates was high, comprising 35%. The number of tree roots with diameters greater than 0.5 cm that cross the soil profile was as low as 0.15 to 0.3 pcs cm-2. The soil matric potential signifying water availability was low in the vegetation period -0.9 MPa to a depth of 1.0 m. According to modelling experiments, the main salt components in the soil solution drive the transfer of soil organic matter (SOM) and heavy metals (HM). The composition of the soil solution determined by the calcium carbonate equilibrium (CCE) and the association and complexation of ions. ION-3 software was used to calculate the ion equilibrium in the soil solution. Macro-ions Cа2+, Mg2+, SO42-, and CO32- partly bonded as ion pairs. Oversaturation of the soil solution with CaCO3 was calculated according to the analytical content of macro-ion, which was high up to 1000 units, and its value decreased in response to ionic strength, activity, association, complexation, and thermodynamic equilibrium of macro-ions in the soil solution. Oversaturation calculated for Salic Solonetz and Gleyic Solonetz soil solutions was small considering the SOM content. Calculations indicate the profile and lateral loss of C from the soil to the vadose zone. The content of Pb in the soil solution was calculated sirca 75%-80%. The calculated coefficient of Pb2+ association was as high as 52.0. The probability of Pb passivation by SOM in the Kastanozem complex was significant. The probability of uncontrolled transfer and accumulation of HM in the soil and vadose zone was high. Biogeosystem Technique (BGT*) transcendental methodology, an innovative methodology created for stable geomorphological system formation to achieve sustainable agriculture and silviculture, was applied. The BGT* elements were: intra-soil milling of the 30-60 cm soil layer for geophysical conditioning; intra-soil continuously-discrete pulse watering for plants and trees to improve the hydrologic regime. The BGT* methodology reduced HM mobility, controlled biodegradation, enriched nutrient biogeochemical cycling, increased C content, increased soil productivity, and reversible carbon sequester in biological form.


Asunto(s)
Bosques , Suelo , Carbono/análisis , Modelos Teóricos , Federación de Rusia , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...