Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2294, 2024 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280982

RESUMEN

Microbiological enhanced oil recovery (MEOR) uses indigenous or exogenous microorganisms and nutrients to enhance oil production through synthesis of metabolites reducing oil viscosity and surface tension. In order to find bacteria suitable for MEOR, we studied 26 isolates from wells in the Akingen oilfield in West Kazakhstan. Six of them were selected for further analysis based on their ability to reduce surface tension to less than 40 mN/m, with the A9 isolate exhibiting tension reduction values of 32.76 ± 0.3 mN/m. Based on the morphological features, biochemical activities, and the 16S rRNA gene, the isolates were classified to the Bacillus subtilis group. In the phylogenetic analysis the isolates grouped into two main clusters. Genes encoding the surfactin synthetase subunits were found in A2, A8, A9, A12, PW2, only the PW2 strain had lchAA encoding lichenysin, while sacB encoding levan was noted in A2, A8, A9, and A12. The expression of srfAB, srfAC, and sacB tested with qPCR varied among strains. Nevertheless, whereas temperature moderately affects the expression level, with the highest level recorded at 40 °C, salinity significantly impacts the expression of the genes encoding biosurfactants. B. subtilis strains isolated in the study, especially A9, are promising for microbial-enhanced oil recovery.


Asunto(s)
Petróleo , Petróleo/metabolismo , Yacimiento de Petróleo y Gas , Filogenia , ARN Ribosómico 16S/genética , Kazajstán , Tensoactivos/química , Aceites , Biopolímeros
2.
Sci Rep ; 13(1): 12606, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537323

RESUMEN

To identify metal adapted bacteria equipped with traits positively influencing the growth of two hyperaccumulator plant species Arabidopsis arenosa and Arabidopsis halleri, we isolated bacteria inhabiting rhizosphere and vegetative tissues (roots, basal and stem leaves) of plants growing on two old Zn-Pb-Cd waste heaps in Boleslaw and Bukowno (S. Poland), and characterized their potential plant growth promoting (PGP) traits as well as determined metal concentrations in rhizosphere and plant tissues. To determine taxonomic position of 144 bacterial isolates, 16S rDNA Sanger sequencing was used. A metabolic characterization of isolated strains was performed in vitro using PGP tests. A. arenosa and A. halleri accumulate high amounts of Zn in their tissues, especially in stem leaves. Among in total 22 identified bacterial taxa, the highest level of the taxonomical diversity (H' = 2.01) was revealed in A. halleri basal leaf endophytes originating from Bukowno waste heap area. The 96, 98, 99, and 98% of investigated strains showed tolerant to Cd, Zn, Pb and Cu, respectively. Generally, higher percentages of bacteria could synthesize auxins, siderophores, and acetoin as well as could solubilize phosphate. Nine of waste heap origin bacterial strains were tolerant to toxic metals, showed in vitro PGP traits and are potential candidates for bioremediation.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Zinc/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Plomo/toxicidad , Plomo/metabolismo , Biodegradación Ambiental , Polonia , Bacterias/genética , Bacterias/metabolismo
3.
Genes (Basel) ; 14(7)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37510288

RESUMEN

Escherichia albertii is a new enteropathogen of humans and animals. The aim of the study was to assess the prevalence and pathogenicity of E. albertii strains isolated in northeastern Poland using epidemiological and genomic studies. In 2015-2018, a total of 1154 fecal samples from children and adults, 497 bird droppings, 212 food samples, 92 water samples, and 500 lactose-negative E. coli strains were tested. A total of 42 E. albertii strains were isolated. The PCR method was suitable for their rapid identification. In total, 33.3% of E. albertii isolates were resistant to one antibiotic, and 16.7% to two. Isolates were sensitive to cefepime, imipenem, levofloxacin, gentamicin, trimethoprim/sulfamethoxazole, and did not produce ESBL ß-lactamases. High genetic variability of E. albertii has been demonstrated. In the PFGE method, 90.5% of the strains had distinct pulsotypes. In MLST typing, 85.7% of strains were assigned distinct sequence types (STs), of which 64% were novel ST types. Cytolethal distending toxin (CDT) and Paa toxin genes were found in 100% of E. albertii isolates. Genes encoding toxins, IbeA, CdtB type 2, Tsh and Shiga (Stx2f), were found in 26.2%, 9.7%, 1.7%, and 0.4% of E. albertii isolates, respectively. The chromosome size of the tested strains ranged from 4,573,338 to 5,141,010 bp (average 4,784,003 bp), and at least one plasmid was present in all strains. The study contributes to a more accurate assessment of the genetic diversity of E. albertii and the potential threat it poses to public health.


Asunto(s)
Infecciones por Enterobacteriaceae , Genoma Bacteriano , Humanos , Animales , Polimorfismo de Longitud del Fragmento de Restricción , Biología Computacional , Filogenia
4.
Sci Rep ; 13(1): 9552, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308531

RESUMEN

Polymer molecules, the main components of plastics, are an emerging pollutants in various environmental compartments (water, air, soil) that may induce several ecotoxicological effects on live organisms. Therefore, understanding how plastic particles interact with bacterial cell membranes is crucial in analysing their associated risks in ecosystems and human microbiota. However, relatively little is known about the interaction between nanoplastics and bacteria. The present work focuses on Staphylococcus aureus and Klebsiella pneumoniae, representing the Gram-positive and Gram-negative bacteria respectively, exposed to 100 nm diameter polystyrene nanoparticles (PS NPs). The nanoparticles attach to the cells' membranes of both bacteria, changing their electrical charge, but without the effect of killing the cells. PS NPs caused a change in zeta potential values (both species of bacterial strains), dependent on particle concentration, pH, as well as on exposure time of bacteria to them. Through the application of AFM and FTIR techniques, the presence of PS NPs on bacterial surfaces was detected, suggesting the affinity of the particles to bacterial components, but without any changes in the morphology of the tested bacteria. The zeta potential can be more widely used in the study of interactions between nanostructures and cells.


Asunto(s)
Microbiota , Nanopartículas , Humanos , Poliestirenos , Antibacterianos , Bacterias Gramnegativas , Bacterias Grampositivas , Plásticos
5.
Molecules ; 28(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37241876

RESUMEN

Due to its great medical and pharmaceutical importance, honey bee venom is considered to be well characterized both chemically and in terms of biomedical activity. However, this study shows that our knowledge of the composition and antimicrobial properties of Apis mellifera venom is incomplete. In this work, the composition of volatile and extractive components of dry and fresh bee venom (BV) was determined by GC-MS, as well as antimicrobial activity against seven types of pathogenic microorganisms. One-hundred and forty-nine organic C1-C19 compounds of different classes were found in the volatile secretions of the studied BV samples. One-hundred and fifty-two organic C2-C36 compounds were registered in ether extracts, and 201 compounds were identified in methanol extracts. More than half of these compounds are new to BV. In microbiological tests involving four species of pathogenic Gram-positive and two species of Gram-negative bacteria, as well as one species of pathogenic fungi, the values of the minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) were determined for samples of dry BV, as well as ether and methanol extracts from it. Gram-positive bacteria show the greatest sensitivity to the action of all tested drugs. The minimum MIC values for Gram-positive bacteria in the range of 0.12-7.63 ng mL-1 were recorded for whole BV, while for the methanol extract they were 0.49-125 ng mL-1. The ether extracts had a weaker effect on the tested bacteria (MIC values 31.25-500 ng mL-1). Interestingly, Escherichia coli was more sensitive (MIC 7.63-500 ng mL-1) to the action of bee venom compared to Pseudomonas aeruginosa (MIC ≥ 500 ng mL-1). The results of the tests carried out indicate that the antimicrobial effect of BV is associated with the presence of not only peptides, such as melittin, but also low molecular weight metabolites.


Asunto(s)
Antiinfecciosos , Venenos de Abeja , Abejas , Venenos de Abeja/farmacología , Venenos de Abeja/química , Metanol , Antiinfecciosos/farmacología , Meliteno/farmacología , Bacterias Grampositivas , Éteres , Pruebas de Sensibilidad Microbiana
6.
Bioelectrochemistry ; 150: 108318, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36470005

RESUMEN

In this study, using bilayer lipid membrane technique, we report a novel facet of antihemolytic activity of two tannins (1,2,3,4,5-penta-O-galloyl-ß-D-glucose (PGG) and 1,2-di-O-galloyl-4,6-valoneoyl-ß-D-glucose (dGVG)), which consists in inhibiting the formation of α-hemolysin channels and blocking the conductivity of already formed channels. These effects were observed at tannin concentrations well below minimal inhibitory concentration values for S. aureus growth. Using spectroscopic methods, we show that these two tannins differing in molecular structure but having the same number of -OH groups and aromatic rings form firm complexes with hemolysin in aqueous solutions, which may underlie the disruption of its subsequent interaction with the membrane, thus preventing hemolysis of erythrocytes. In all experimental settings, PGG was the more active compound compared to dGVG, that indicates the important role of the flexibility of the tannin molecule in interaction with the toxin. In addition, we found that PGG, but not dGVG, was able to block the release of the toxin by bacterial cells. This toxin is a strong pathogenic factor causing a number of diseases and therefore is considered as a virulence target for treatment of S. aureus infection, so the data obtained suggest that PGG and possibly other tannins of similar structure have therapeutic potential in fighting the virulence of S. aureus.


Asunto(s)
Taninos Hidrolizables , Staphylococcus aureus Resistente a Meticilina , Taninos Hidrolizables/farmacología , Proteínas Hemolisinas , Staphylococcus aureus , Taninos/farmacología , Taninos/química , Glucosa
7.
Molecules ; 27(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36431788

RESUMEN

The chemical composition of propolis of four species of stingless bees (SLBs) from Argentina was determined, and its antibacterial and anticancer activity was evaluated on selected types of microbes and cancer cell lines. Volatile secretions of all propolis samples are formed by 174 C2-C15 organic compounds, mainly mono- and sesquiterpenes and their derivatives. The chromatograms of ether extracts showed 287 peaks, of which 210 were identified. The most representative groups in the extracts of various propolis samples were diterpenoids (mainly resin acids), triterpenoids and phenolic compounds: long-chain alkenyl phenols, resorcinols and salicylates. The composition of both volatile and extractive compounds turned out to be species-specific; however, in both cases, the pairwise similarity of the propolis of Scaptotrigona postica and Tetragonisca fiebrigi versus that of Tetragona clavipes and Melipona quadrifasciata quadrifasciata was observed, which indicated the similarity of the preferences of the respective species when choosing plant sources of resin. The composition of the studied extracts completely lacked flavonoids and phenolcarboxylic acids, which are usually associated with the biological activity and medicinal properties of propolis. However, tests on selected microbial species and cancer cell lines showed such activity. All propolis samples tested against Paenibacillus larvae, two species of Bacillus and E. coli showed biofilm inhibition unrelated to the inhibition of bacterial growth, leading to a decrease in their pathogenicity. Testing the anticancer activity of ether extracts using five types of cell cultures showed that all four types of propolis studied inhibit the growth of cancer cells in a dose- and time-dependent manner. Propolis harvested by T. clavipes demonstrated the highest cytotoxicity on all tested cell lines.


Asunto(s)
Ascomicetos , Própolis , Abejas , Animales , Própolis/farmacología , Própolis/química , Escherichia coli , Argentina , Flavonoides/química , Resinas de Plantas , Éteres
8.
Membranes (Basel) ; 12(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36363679

RESUMEN

Polyphenols, including tannins, are phytochemicals with pronounced antimicrobial properties. We studied the activity of two hydrolysable tannins, (i) gallotannin-1,2,3,4,5-penta-O-galloyl-ß-D-glucose (PGG) and (ii) ellagitannin-1,2-di-O-galloyl-4,6-valoneoyl-ß-D-glucose (dGVG), applied alone and in combination with antibiotics against Staphylococcus aureus strain 8324-4. We also evaluated the effect of these tannins on bacterial membrane integrity and fluidity and studied their interaction with membrane proteins and lipids. A correlation between the antimicrobial activity of the tannins and their membranotropic action depending on the tannin molecular structure has been demonstrated. We found that the antibacterial activity of PGG was stronger than dGVG, which can be associated with its larger flexibility, dipole moment, and hydrophobicity. In addition, we also noted the membrane effects of the tannins observed as an increase in the size of released bacterial membrane vesicles.

9.
Biochim Biophys Acta Biomembr ; 1864(10): 184011, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35872033

RESUMEN

Phenolic acids represent a class of drugs with mild antibacterial properties. We have synthesized iodinated gallic and ferulic acids and together with commercially available iodinated forms of salicylic acids studied their cytotoxicity, bacteriostatic and anti-virulence action. Out of these, iodogallic acid had lowest minimal inhibitory concentration (MIC) against Staphylococcus aureus (MIC = 0.4 mM/118.8 µg/ml). Yet, it had strong effect on erythrocyte membrane lipid ordering and on α-hemolysin secretion by the bacteria at lower non-bacteriostatic and non-cytotoxic concentrations (<0.1 mM). Iodogallic acid formed static complexes with α-hemolysin in solutions (logKb = 4.69 ± 0.07) and inhibited its nano-pore conduction in artificial lipid bilayers (IC50 = 37.9 ± 5.3 µM). These effects of iodogallic acid converged on prevention of hemolysis induced by α-hemolysin (IC50 = 41.5 ± 4.2 µM) and pointed to enhanced and diverse anti-virulence properties of some aryl iodides. The analysis of molecular surface electrostatic charge distribution, molecular hydrophilicity, electronegativity, and dipole moment of studied compounds suggested the importance of the number of hydroxyl groups and their proximity to iodine in anti-virulence activity manifestation. In iodogallic acid, charge redistribution resulted in higher hydrophilicity without concomitant change in overall molecular electronegativity and dipole moment compared to non-iodinated gallic acid. This study shows new directions for the development of antibacterial/antivirulence therapeutics.


Asunto(s)
Proteínas Hemolisinas , Yoduros , Antibacterianos/farmacología , Yoduros/farmacología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus
10.
Front Microbiol ; 13: 853407, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495712

RESUMEN

The Boleslaw waste heap in South Poland, with total soil Zn concentrations higher than 50,000 mg kg-1, 5,000 mg Pb kg-1, and 500 mg Cd kg-1, is a unique habitat for metallicolous plants, such as Trifolium repens L. The purpose of this study was to characterize the association between T. repens and its microbial symbionts, i.e., Rhizobium leguminosarum bv. trifolii and mycorrhizal fungi and to evaluate its applicability for phytostabilization of metal-polluted soils. Rhizobia originating from the nutrient-poor waste heap area showed to be efficient in plant nodulation and nitrogen fixation. They demonstrated not only potential plant growth promotion traits in vitro, but they also improved the growth of T. repens plants to a similar extent as strains from a non-polluted reference area. Our results revealed that the adaptations of T. repens to high Zn-Pb-Cd concentrations are related to the storage of metals predominantly in the roots (excluder strategy) due to nodule apoplast modifications (i.e., thickening and suberization of cell walls, vacuolar storage), and symbiosis with arbuscular mycorrhizal fungi of a substantial genetic diversity. As a result, the rhizobia-mycorrhizal fungi-T. repens association appears to be a promising tool for phytostabilization of Zn-Pb-Cd-polluted soils.

11.
Front Microbiol ; 12: 547020, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956105

RESUMEN

Objectives: The growing incidence of multidrug-resistant (MDR) bacteria is an inexorable and fatal challenge in modern medicine. Colistin is a cationic polypeptide considered a "last-resort" antimicrobial for treating infections caused by MDR Gram-negative bacterial pathogens. Plasmid-borne mcr colistin resistance emerged recently, and could potentially lead to essentially untreatable infections, particularly in hospital and veterinary (livestock farming) settings. In this study, we sought to establish the molecular basis of colistin-resistance in six extraintestinal Escherichia coli strains. Methods: Molecular investigation of colistin-resistance was performed in six extraintestinal E. coli strains isolated from patients hospitalized in Medical University Hospital, Bialystok, Poland. Complete structures of bacterial chromosomes and plasmids were recovered with use of both short- and long-read sequencing technologies and Unicycler hybrid assembly. Moreover, an electrotransformation assay was performed in order to confirm IncX4 plasmid influence on colistin-resistance phenotype in clinical E. coli strains. Results: Here we report on the emergence of six mcr-1.1-producing extraintestinal E. coli isolates with a number of virulence factors. Mobile pEtN transferase-encoding gene, mcr-1.1, has been proved to be encoded within a type IV secretion system (T4SS)-containing 33.3 kbp IncX4 plasmid pMUB-MCR, next to the PAP2-like membrane-associated lipid phosphatase gene. Conclusion: IncX4 mcr-containing plasmids are reported as increasingly disseminated among E. coli isolates, making it an "epidemic" plasmid, responsible for (i) dissemination of colistin-resistance determinants between different E. coli clones, and (ii) circulation between environmental, industrial, and clinical settings. Great effort needs to be taken to avoid further dissemination of plasmid-mediated colistin resistance among clinically relevant Gram-negative bacterial pathogens.

12.
Microbiol Spectr ; 9(1): e0031121, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34287030

RESUMEN

Bacillus mycoides is poorly known despite its frequent occurrence in a wide variety of environments. To provide direct insight into its ecology and evolutionary history, a comparative investigation of the species pan-genome and the functional gene categorization of 35 isolates obtained from soil samples from northeastern Poland was performed. The pan-genome of these isolates is composed of 20,175 genes and is characterized by a strong predominance of adaptive genes (∼83%), a significant amount of plasmid genes (∼37%), and a great contribution of prophages and insertion sequences. The pan-genome structure and phylodynamic studies had suggested a wide genomic diversity among the isolates, but no correlation between lineages and the bacillus origin was found. Nevertheless, the two B. mycoides populations, one from Bialowieza National Park, the last European natural primeval forest with soil classified as organic, and the second from mineral soil samples taken in a farm in Jasienówka, a place with strong anthropogenic pressure, differ significantly in the frequency of genes encoding proteins enabling bacillus adaptation to specific stress conditions and production of a set of compounds, thus facilitating their colonization of various ecological niches. Furthermore, differences in the prevalence of essential stress sigma factors might be an important trail of this process. Due to these numerous adaptive genes, B. mycoides is able to quickly adapt to changing environmental conditions. IMPORTANCE This research allows deeper understanding of the genetic organization of natural bacterial populations, specifically, Bacillus mycoides, a psychrotrophic member of the Bacillus cereus group that is widely distributed worldwide, especially in areas with continental cold climates. These thorough analyses made it possible to describe, for the first time, the B. mycoides pan-genome, phylogenetic relationship within this species, and the mechanisms behind the species ecology and evolutionary history. Our study indicates a set of functional properties and adaptive genes, in particular, those encoding sigma factors, associated with B. mycoides acclimatization to specific ecological niches and changing environmental conditions.


Asunto(s)
Bacillus/genética , Bacillus/fisiología , Evolución Biológica , Ecología , Efectos Antropogénicos , Bacillus/clasificación , Bacillus/aislamiento & purificación , Elementos Transponibles de ADN , Genoma Bacteriano , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Plásmidos/genética , Factor sigma , Suelo , Microbiología del Suelo , Especificidad de la Especie
13.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802057

RESUMEN

Heavy metals polluting the 100-year-old waste heap in Boleslaw (Poland) are acting as a natural selection factor and may contribute to adaptations of organisms living in this area, including Trifolium repens and its root nodule microsymbionts-rhizobia. Exopolysaccharides (EPS), exuded extracellularly and associated with bacterial cell walls, possess variable structures depending on environmental conditions; they can bind metals and are involved in biofilm formation. In order to examine the effects of long-term exposure to metal pollution on EPS structure and biofilm formation of rhizobia, Rhizobium leguminosarum bv. trifolii strains originating from the waste heap area and a non-polluted reference site were investigated for the characteristics of the sugar fraction of their EPS using gas chromatography mass-spectrometry and also for biofilm formation and structural characteristics using confocal laser scanning microscopy under control conditions as well as when exposed to toxic concentrations of zinc, lead, and cadmium. Significant differences in EPS structure, biofilm thickness, and ratio of living/dead bacteria in the biofilm were found between strains originating from the waste heap and from the reference site, both without exposure to metals and under metal exposure. Received results indicate that studied rhizobia can be assumed as potentially useful in remediation processes.


Asunto(s)
Biopelículas , Metales Pesados/metabolismo , Polisacáridos Bacterianos/metabolismo , Rhizobium leguminosarum/fisiología , Contaminantes del Suelo/metabolismo , Trifolium/microbiología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo
14.
Ann Agric Environ Med ; 28(1): 49-55, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33775067

RESUMEN

INTRODUCTION AND OBJECTIVE: Ixodes ricinus (I. ricinus) and Dermacentor reticulatus (D. reticulatus) are the most common ticks in Poland. These ticks contain many bacteria, which compose a microbiome with potential impact on humans. The aim of the study was to discover the microbiome of ticks in Poland. MATERIAL AND METHODS: Ticks were collected in The Protected Landscape Area of the Bug and Nurzec Valley, Poland, in 2016-2018 by flagging. They were cleaned in 70% ethanol and damaged in mortar with PBS (without Ca2+ and Mg2+ ions). DNA was extracted from the homogenates with spin columns kits, and used as a matrix in end-point PCR for bacterial 16S rRNA fragments amplifications, and further for next generation sequencing (NGS) by ILLUMINA. RESULTS: In 22 ticks (3 I. ricinus and 19 D. reticulatus) 38 microorganisms were detected. The most common were Francisella hispaniensis and Francisella novicida. In 17 ticks, Sphingomonas oligophenolica, and in 12 Rickettsia aeshlimanii were found. In 2, I. ricinus specific DNA of Borrelia americana and Borrelia carolinensis were found. In one female, D. reticulatus Anaplasma phagocytophilum and Anaplasma centrale were found. Pseudomonas lutea and Ps. moraviensis were detected in 9 and 8 ticks, respectively. CONCLUSIONS: Polish ticks microbiome contains not only well-known tick-borne pathogens, but also other pathogenic microorganisms. For the first time in Poland, Borrelia americana and Borrelia carolinensis in I. ricinus collected from the environment were detected. The dominant pathogenic microorganisms for humans were Francisella spp. and Rickettsia spp., and non-pathogenic - Sphingomonas oligophenolica. Knowledge of a tick microbiome might be useful in tick-borne biocontrol and tick-borne diseases prevention.


Asunto(s)
Dermacentor/microbiología , Ixodes/microbiología , Microbiota , Spirochaetales/genética , Animales , Francisella/clasificación , Francisella/genética , Francisella/aislamiento & purificación , Genoma Bacteriano , Metagenómica , Polonia , Pseudomonas/clasificación , Pseudomonas/aislamiento & purificación , Sphingomonas/clasificación , Sphingomonas/genética , Sphingomonas/aislamiento & purificación , Spirochaetales/clasificación , Spirochaetales/aislamiento & purificación
15.
Sci Total Environ ; 743: 140682, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758827

RESUMEN

New eco-friendly approaches are required to improve plant biomass production. Beneficial plant growth-promoting (PGP) bacteria may be exploited as excellent and efficient biotechnological tools to improve plant growth in various - including stressful - environments. We present an overview of bacterial mechanisms which contribute to plant health, growth, and development. Plant growth promoting rhizobacteria (PGPR) can interact with plants directly by increasing the availability of essential nutrients (e.g. nitrogen, phosphorus, iron), production and regulation of compounds involved in plant growth (e.g. phytohormones), and stress hormonal status (e.g. ethylene levels by ACC-deaminase). They can also indirectly affect plants by protecting them against diseases via competition with pathogens for highly limited nutrients, biocontrol of pathogens through production of aseptic-activity compounds, synthesis of fungal cell wall lysing enzymes, and induction of systemic responses in host plants. The potential of PGPR to facilitate plant growth is of fundamental importance, especially in case of abiotic stress, where bacteria can support plant fitness, stress tolerance, and/or even assist in remediation of pollutants. Providing additional evidence and better understanding of bacterial traits underlying plant growth-promotion can inspire and stir up the development of innovative solutions exploiting PGPR in times of highly variable environmental and climatological conditions.


Asunto(s)
Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Bacterias , Plantas , Microbiología del Suelo , Estrés Fisiológico
16.
Plants (Basel) ; 9(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781790

RESUMEN

Heavy metals in soil, as selective agents, can change the structure of plant-associated bacterial communities and their metabolic properties, leading to the selection of the most-adapted strains, which might be useful in phytoremediation. Trifolium repens, a heavy metal excluder, naturally occurs on metal mine waste heaps in southern Poland characterized by high total metal concentrations. The purpose of the present study was to assess the effects of toxic metals on the diversity and metabolic properties of the microbial communities in rhizospheric soil and vegetative tissues of T. repens growing on three 70-100-years old Zn-Pb mine waste heaps in comparison to Trifolium-associated bacteria from a non-polluted reference site. In total, 113 cultivable strains were isolated and used for 16S rRNA gene Sanger sequencing in order to determine their genetic affiliation and for in vitro testing of their plant growth promotion traits. Taxa richness and phenotypic diversity in communities of metalliferous origin were significantly lower (p < 0.0001) compared to those from the reference site. Two strains, Bacillus megaterium BolR EW3_A03 and Stenotrophomonas maltophilia BolN EW3_B03, isolated from a Zn-Pb mine waste heap which tested positive for all examined plant growth promoting traits and which showed co-tolerance to Zn, Cu, Cd, and Pb can be considered as potential facilitators of phytostabilization.

17.
Sci Rep ; 10(1): 11168, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636484

RESUMEN

The objective of the study was a comparative analysis of the antihemolytic activity against two Staphylococcus aureus strains (8325-4 and NCTC 5655) as well as α-hemolysin and of the membrane modifying action of four hydrolysable tannins with different molecular mass and flexibility: 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-ß-D-glucose (T1), 1,2,3,4,5-penta-O-galloyl-ß-D-glucose (T2), 3-O-galloyl-1,2-valoneoyl-ß-D-glucose (T3) and 1,2-di-O-galloyl-4,6-valoneoyl-ß-D-glucose (T4). We showed that all the compounds studied manifested antihemolytic effects in the range of 5-50 µM concentrations. However, the degree of the reduction of hemolysis by the investigated tannins was not uniform. A valoneoyl group-containing compounds (T3 and T4) were less active. Inhibition of the hemolysis induced by α-hemolysin was also noticed on preincubated with the tannins and subsequently washed erythrocytes. In this case the efficiency again depended on the tannin structure and could be represented by the following order: T1 > T2 > T4 > T3. We also found a relationship between the degree of antihemolytic activity of the tannins studied and their capacity to increase the ordering parameter of the erythrocyte membrane outer layer and to change zeta potential. Overall, our study showed a potential of the T1 and T2 tannins as anti-virulence agents. The results of this study using tannins with different combinations of molecular mass and flexibility shed additional light on the role of tannin structure in activity manifestation.


Asunto(s)
Proteínas Hemolisinas/farmacología , Hemólisis/efectos de los fármacos , Hemolíticos/farmacología , Extractos Vegetales/farmacología , Taninos/farmacología , Animales , Membrana Eritrocítica/efectos de los fármacos , Euphorbiaceae/química , Ácido Gálico/análogos & derivados , Glucosa/análogos & derivados , Extractos Vegetales/química , Ovinos , Staphylococcus aureus/enzimología , Taninos/química
18.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32220844

RESUMEN

Bacillus cereus sensu lato comprises Gram-positive spore-forming bacteria producing toxins associated with foodborne diseases. Three pore-forming enterotoxins, nonhemolytic enterotoxin (Nhe), hemolysin BL (Hbl), and cytotoxin K (CytK), are considered the primary factors in B. cereus sensu lato diarrhea. The aim of this study was to determine the potential risk of enterotoxicity among soil B. cereus sensu lato isolates representing diverse phylogroups and originated from different geographic locations with various climates (Burkina Faso, Kenya, Argentina, Kazakhstan, and Poland). While nheA- and hblA-positive isolates were present among all B. cereus sensu lato populations and distributed across all phylogenetic groups, cytK-2-positive strains predominated in geographic regions with an arid hot climate (Africa) and clustered together on a phylogenetic tree mainly within mesophilic groups III and IV. The highest in vitro cytotoxicity to Caco-2 and HeLa cells was demonstrated by the strains clustered within phylogroups II and IV. Overall, our results suggest that B. cereus sensu lato pathogenicity is a comprehensive process conditioned by many intracellular factors and diverse environmental conditions.IMPORTANCE This research offers a new route for a wider understanding of the dependency between pathogenicity and phylogeny of a natural bacterial population, specifically within Bacillus cereus sensu lato, that is widely distributed around the world and easily transferred into food products. Our study indicates differences in the phylogenetic and geographical distributions of potential enterotoxigenic B. cereus sensu lato strains. Hence, these bacilli possess a risk for human health, and rapid testing methods for their identification are greatly needed. In particular, the detection of the CytK enterotoxin should be a supporting strategy for the identification of pathogenic B. cereus sensu lato.


Asunto(s)
Bacillus cereus/patogenicidad , Enterotoxinas/toxicidad , Microbiología del Suelo , Argentina , Bacillus cereus/clasificación , Proteínas Bacterianas/toxicidad , Burkina Faso , Células CACO-2 , Clima , Células HeLa , Proteínas Hemolisinas/toxicidad , Humanos , Kazajstán , Kenia , Filogenia , Polonia , Virulencia
19.
BMC Infect Dis ; 20(1): 56, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31952512

RESUMEN

BACKGROUND: Nocardiosis is an uncommon disease caused by aerobic gram-positive bacteria Nocardia spp. Although it is usually an opportunistic infection affecting immunocompromised patients, even one third of cases occur in immunocompetent persons. The aim of the study was to describe the course of chronic meningitis due to Nocardia infection. CASE PRESENTATION: A 52-year-old patient, chalk miner, suffered from a chronic meningitis caused by an extremely rare pathogen. The patient's history was complicated and diagnostic process covered multiple examinations and consultations. Initially Kocuria rosea was cultured, yet after molecular examination the result was verified to Nocardia farcinica. Targeted antibiotic treatment was implemented, which resulted in gradual improvement of patients condition. A full recovery was achieved after one year antibiotic therapy. CONCLUSIONS: 1.Nocardia farcinica is an uncommon but possible cause of chronic meningitis.2.In the case of a chronic meningitis of unknown origin multiple cerebrospinal fluid cultures should be performed as the identification of pathogen may be crucial for patient's recovery.3.In case of unusual culture, such as Kocuria spp. PCR should be performed.


Asunto(s)
Meningitis/diagnóstico , Nocardia/aislamiento & purificación , Antibacterianos/uso terapéutico , Encéfalo/diagnóstico por imagen , Enfermedad Crónica , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Humanos , Huésped Inmunocomprometido , Imagen por Resonancia Magnética , Meningitis/tratamiento farmacológico , Meningitis/microbiología , Persona de Mediana Edad , Nocardia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...