Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polym Chem ; 15(18): 1833-1838, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38721413

RESUMEN

Macromolecular scaffolds are rapidly emerging in catalysis owing to the ability to control catalyst placement at precise locations. This spatial proximity allows for enhanced catalyst activity that may not be observed using small molecules. Herein, we describe a triphenylpyrylium (TPT)-based visible-light active single-chain polymer nanoparticle (SCNP) that facilitates the radical cation [4 + 2]-cycloaddition. We find that the catalytic activity is highly dependent on the styrylarene comonomer used, wherein it can act as a redox mediator under confinement, increasing the catalytic turnover (TON) by up to 30 times in comparison to free TPT in solution. Mechanistic studies indicate that TPT excited states are quenched by the acene, with the resultant radical cation formed from naphthalene-based SCNPs able to proceed in oxidizing the dienophile in the elementary step of the reaction, while leading to near quantitative yields of the cycloadduct. The TPT-SCNP demonstrates enhanced photocatalyst efficiency compared to molecular TPT, and is able to be recycled and reused in three iterations of the reaction prior to decreased performance from photobleaching. Our results overall suggest that the confined nature of the SCNP and spatial proximity of acene-based pendants enforces their participation as cocatalytic redox mediators that impart enhanced photoredox catalysis under confinement.

2.
Anal Chem ; 96(9): 3906-3913, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38387033

RESUMEN

As tattoos continue to rise in popularity, the demand for tattoo ink has surged. Historically, tattoo inks have been underregulated in the US market. This study analyzes inks from nine different brands that are common in the United States, ranging from major to small manufacturers. Out of 54 inks, 45 contained unlisted additives and/or pigments. Major, unlisted adulterants include poly(ethylene glycol), propylene glycol, and higher alkanes. Many of the adulterants pose possible allergic or other health risks. Taken together, the results from this study highlight the potential for a significant issue around inaccurate tattoo ink labeling in the United States.


Asunto(s)
Tatuaje , Estados Unidos , Tinta , Polietilenglicoles , Colorantes
3.
Dalton Trans ; 52(28): 9646-9654, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37378435

RESUMEN

Sulfur-containing compounds must be removed from raw fuel oils before use and recently, there has been an effort to identify and optimize a more energy efficient method of oil processing. One promising route is electrochemical oxidative desulfurization (ODS), and in this work, we investigate an electrodeposited iron oxide film (FeOx(OH)y) as a working electrode to catalyze the oxidation of dibenzothiophene (DBT). The FeOx(OH)y film displays unexpected selectivity for the DBT sulfoxide (DBTO)-departing from the catalytic behavior of gold, which favors the dimerization of DBT. In addition, we observe a morphological change within our FeOx(OH)y film from γ-FeOOH to γ-Fe2O3. This change provides insight to the activity of each structure for ODS as the rate of oxidation increases after the incorporation of γ-Fe2O3. Our experimental observations are corroborated with DFT calculations, which suggest that the adsorption energy of DBT on Au is significantly greater than on the FeOx(OH)y, favoring the formation of dimeric and oligomeric products. Calculations also demonstrate that DBT binds preferably in a monodentate configuration but that oxidation occurs via DBT bound via a bidentate configuration. Monodentate binding on γ-FeOOH is significantly stronger than binding on γ-Fe2O, resulting in easier conversation to bidentate binding on γ-Fe2O3.

4.
J Org Chem ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37252849

RESUMEN

The use of photoredox catalysis for the synthesis of small organic molecules relies on harnessing and converting the energy in visible light to drive reactions. Specifically, photon energy is used to generate radical ion species that can be harnessed through subsequent reaction steps to form a desired product. Cyanoarenes are widely used as arylating agents in photoredox catalysis because of their stability as persistent radical anions. However, there are marked, unexplained variations in product yields when using different cyanoarenes. In this study, the quantum yield and product yield of an α-aminoarylation photoredox reaction between five cyanoarene coupling partners and N-phenylpyrrolidine were characterized. Significant discrepancies in cyanoarene consumption and product yield suggested a chemically irreversible, unproductive pathway in the reaction. Analysis of the side products in the reaction demonstrated the formation of species consistent with radical anion fragmentation. Electrochemical and computational methods were used to study the fragmentation of the different cyanoarenes and revealed a correlation between product yield and cyanoarene radical anion stability. Kinetic modeling of the reaction demonstrates that cross-coupling selectivity between N-phenylpyrrolidine and the cyanoarene is controlled by the same phenomenon present in the persistent radical effect.

5.
Chem Commun (Camb) ; 59(20): 2943-2945, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36799450

RESUMEN

An electron donor-acceptor (EDA) complex forms between 1,4-dicyanobenzene and N-phenylpyrrolidine, which are coupling partners for the α-aminoarylation photoredox reaction. Calculations and experiments demonstrate the EDA complex is a better base than N-phenylpyrroline. A re-analysis of the α-aminoarylation reaction suggests that the EDA complex is a proton acceptor in the reaction.

6.
ACS Omega ; 7(29): 25532-25536, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35910131

RESUMEN

Excited state quenching is a key step in photochemical reactions that involve energy or electron transfer. High reaction quantum yields require sufficiently high concentrations of a quencher to ensure efficient quenching. The determination of quencher concentrations is typically done through trial and error. Using kinetic modeling, however, a simple relationship was developed that predicts the concentration of quencher necessary to quench 90% of excited states, using only the photosensitizer lifetime and the rate constant for quenching as inputs. Comparison of the predicted quencher concentrations and quencher concentrations used in photoredox reactions featuring acridinium-based photocatalysts reveals that the majority of reactions used quencher concentrations significantly below the predicted concentration. This suggests that these reactions exhibit low quantum yields, requiring long reaction times and/or intense light sources.

7.
Angew Chem Int Ed Engl ; 61(25): e202200725, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35446458

RESUMEN

A new strategy for the synthesis of highly versatile cyclobutylboronates via the photosensitized [2+2]-cycloaddition of alkenylboronates and alkenes is presented. The process is mechanistically different from other processes in that energy transfer occurs with the alkenylboronate as opposed to the other alkene. This strategy allows for the synthesis of an array of diverse cyclobutylboronates. The conversion of these adducts to other compounds as well as their utility in the synthesis of melicodenine C is demonstrated.

8.
J Org Chem ; 87(1): 223-230, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34882427

RESUMEN

Despite widespread use as a synthetic method, the precise mechanism and kinetics of photoredox coupled hydrogen atom transfer (HAT) reactions remain poorly understood. This results from a lack of detailed kinetic information as well as the identification of side reactions and products. In this report, a mechanistic study of a prototypical tandem photoredox/HAT reaction coupling cyclohexene and 1,4-dicyanobenzene (DCB) using an Ir(ppy)3 photocatalyst and thiol HAT catalyst is reported. Through a combination of electrochemical, photochemical, and spectroscopic measurements, key unproductive pathways and side products are identified and rate constants for the main chemical steps are extracted. The reaction quantum yield was found to decline rapidly over the course of the reaction. An unreported cyanohydrin side product was identified and thought to play a key role as a proton acceptor in the reaction. Transient absorption spectroscopy (TAS) and quantum chemical calculations suggested a reaction mechanism that involves radical addition of the nucleophilic DCB radical anion to cyclohexene, with cooperative HAT occurring as the final step to regenerate the alkene. Kinetic modeling of the reaction, using rate constants derived from TAS, demonstrates that the efficiency of the reaction is limited by parasitic absorption and unproductive quenching between excited Ir(ppy)3 and the cyanohydrin photoproduct.


Asunto(s)
Hidrógeno , Protones , Alquenos , Catálisis , Oxidación-Reducción
9.
J Am Chem Soc ; 143(23): 8878-8885, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34077202

RESUMEN

While photoredox catalysis continues to transform modern synthetic chemistry, detailed mechanistic studies involving direct observation of reaction intermediates and rate constants are rare. By use of a combination of steady state photochemical measurements, transient laser spectroscopy, and electrochemical methods, an α-aminoarylation mechanism that is the inspiration for a large number of photoredox reactions was rigorously characterized. Despite high product yields, the external quantum yield (QY) of the reaction remained low (15-30%). By use of transient absorption spectroscopy, productive and unproductive reaction pathways were identified and rate constants assigned to develop a comprehensive mechanistic picture of the reaction. The role of the cyanoarene, 1,4-dicyanobenzne, was found to be unexpectedly complex, functioning both as initial proton acceptor in the reaction and as a neutral stabilizer for the 1,4-dicyanobenzene radical anion. Finally, kinetic modeling was utilized to analyze the reaction at an unprecedented level of understanding. This modeling demonstrated that the reaction is limited not by the kinetics of the individual steps but instead by scattering losses and parasitic absorption by a photochemically inactive donor-acceptor complex.

10.
Anal Chem ; 92(6): 4187-4192, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32091896

RESUMEN

The characterization of emerging materials is crucial for the experimentally driven design of next-generation technologies. We describe a cost- and time-effective method for suspending nanoparticles and other photoactive materials in Nafion for transient spectroscopy and time-resolved terahertz (THz) photoconductivity measurements. Nafion is an ideal suspension matrix because it has high transparency throughout the UV/vis/near-IR and THz regions of the spectrum. Suspensions of nanoparticles in Nafion require only small amounts of sample (<5 mg) and can be prepared and deposited in ∼1 h. The suspension is well-suited for transient THz measurements, which can be used to determine the photoconductivity spectrum of the embedded nanoparticles. In this work, we used silicon nanoparticles as a model material to demonstrate the efficacy of Nafion suspensions for transient THz spectroscopy. This methodology can be used for rapid and cost-effective measurements of emerging materials such as solar materials, electrocatalysts, and nanomaterials.

11.
Chem Commun (Camb) ; 54(57): 7971-7974, 2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-29961797

RESUMEN

Core-shell architectures are used to modulate injection and recombination in dye-sensitized photoelectrochemical cells. Here, we demonstrate that exposing SnO2-core/ZrO2-shell films to acid permits photoinduced electron transfer through ZrO2-shells at least 4 nm thick. A novel mechanism of charge transfer is proposed where protonic defects permit ultrafast trap-assisted tunneling of electrons.

12.
Anal Chem ; 90(7): 4389-4396, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29543436

RESUMEN

Terahertz spectroscopy is broadly applicable for the study of a wide variety of materials, but spectroelectrochemistry has not been performed in the THz range because of the lack of a THz-transparent electrochemical cell. While THz-transparent electrodes do exist, they have never been utilized in a complete three-electrode cell, which is the configuration required for accurate potential control in aqueous media. We have designed and constructed a THz-transparent three-electrode electrochemical cell and have performed THz spectroelectrochemistry of a SnO2 thin film. The cell utilizes a custom-made reference electrode and tubing which allows the composition of electrolyte to be changed during an experiment. THz spectroelectrochemical measurements show a decrease in THz transmission at potentials where SnO2 conduction band states are potentiostatically filled. We also describe a simple method for measuring the uncompensated resistance and RC time constant.

13.
Chem Soc Rev ; 46(2): 559, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-27991618

RESUMEN

Correction for 'Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells' by John R. Swierk et al., Chem. Soc. Rev., 2013, 42, 2357-2387.

14.
J Phys Chem Lett ; 7(15): 2930-4, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27414977

RESUMEN

Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) rely on photoinduced charge separation at a dye/semiconductor interface to supply electrons and holes for water splitting. To improve the efficiency of charge separation and reduce charge recombination in these devices, it is possible to use core/shell structures in which photoinduced electron transfer occurs stepwise through a series of progressively more positive acceptor states. Here, we use steady-state emission studies and time-resolved terahertz spectroscopy to follow the dynamics of electron injection from a photoexcited ruthenium polypyridyl dye as a function of the TiO2 shell thickness on SnO2 nanoparticles. Electron injection proceeds directly into the SnO2 core when the thickness of the TiO2 shell is less than 5 Å. For thicker shells, electrons are injected into the TiO2 shell and trapped, and are then released into the SnO2 core on a time scale of hundreds of picoseconds. As the TiO2 shell increases in thickness, the probability of electron trapping in nonmobile states within the shell increases. Conduction band electrons in the TiO2 shell and the SnO2 core can be differentiated on the basis of their mobility. These observations help explain the observation of an optimum shell thickness for core/shell water-splitting electrodes.

15.
Phys Chem Chem Phys ; 18(28): 18678-82, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27364769

RESUMEN

Interfacial electron transfer dynamics of a series of photosensitizers bound to TiO2via linkers of varying conjugation strength are explored by spectroscopic and computational techniques. Injection and recombination depend on the extent of conjugation in the linker, where the LUMO delocalization determines the injection dynamics but both the HOMO and HOMO-1 are involved in recombination.

16.
ACS Appl Mater Interfaces ; 8(26): 16727-35, 2016 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-27295276

RESUMEN

Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) utilize a sensitized metal oxide and a water oxidation catalyst in order to generate hydrogen and oxygen from water. Although the Faradaic efficiency of water splitting is close to unity, the recombination of photogenerated electrons with oxidized dye molecules causes the quantum efficiency of these devices to be low. It is therefore important to understand recombination mechanisms in order to develop strategies to minimize them. In this paper, we discuss the role of proton intercalation in the formation of recombination centers. Proton intercalation forms nonmobile surface trap states that persist on time scales that are orders of magnitude longer than the electron lifetime in TiO2. As a result of electron trapping, recombination with surface-bound oxidized dye molecules occurs. We report a method for effectively removing the surface trap states by mildly heating the electrodes under vacuum, which appears to primarily improve the injection kinetics without affecting bulk trapping dynamics, further stressing the importance of proton control in WS-DSPECs.

17.
J Am Chem Soc ; 137(27): 8749-57, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26106904

RESUMEN

Soluble, monomeric Ir(III/IV) complexes strongly affect the photoelectrochemical performance of IrO(x)·nH2O-catalyzed photoanodes for the oxygen evolution reaction (OER). The synthesis of IrO(x)·nH2O colloids by alkaline hydrolysis of Ir(III) or Ir(IV) salts proceeds through monomeric intermediates that were characterized using electrochemical and spectroscopic methods and modeled in TDDFT calculations. In air-saturated solutions, the monomers exist in a mixture of Ir(III) and Ir(IV) oxidation states, where the most likely formulations at pH 13 are [Ir(OH)5(H2O)](2-) and [Ir(OH)6](2-), respectively. These monomeric anions strongly adsorb onto IrO(x)·nH2O colloids but can be removed by precipitation of the colloids with isopropanol. The monomeric anions strongly adsorb onto TiO2, and they promote the adsorption of ligand-free IrO(x)·nH2O colloids onto mesoporous titania photoanodes. However, the reversible adsorption/desorption of electroactive monomers effectively short-circuits the photoanode redox cycle and thus dramatically degrades the photoelectrochemical performance of the cell. The growth of a dense TiO2 barrier layer prevents access of soluble monomeric anions to the interface between the oxide semiconductor and the electrode back contact (a fluorinated tin oxide transparent conductor) and leads to improved photoanode performance. Purified IrO(x)·nH2O colloids, which contain no adsorbed monomer, give improved performance at the same electrodes. These results explain earlier observations that IrO(x)·nH2O catalysts can dramatically degrade the performance of metal oxide photoanodes for the OER reaction.


Asunto(s)
Iridio/química , Nanopartículas/química , Agua/química , Aniones/química , Catálisis , Coloides/química , Técnicas Electroquímicas , Electrodos , Hidrólisis , Nanopartículas/ultraestructura , Procesos Fotoquímicos , Semiconductores
19.
Proc Natl Acad Sci U S A ; 112(6): 1681-6, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25583488

RESUMEN

Solar fuel generation requires the efficient capture and conversion of visible light. In both natural and artificial systems, molecular sensitizers can be tuned to capture, convert, and transfer visible light energy. We demonstrate that a series of metal-free porphyrins can drive photoelectrochemical water splitting under broadband and red light (λ > 590 nm) illumination in a dye-sensitized TiO2 solar cell. We report the synthesis, spectral, and electrochemical properties of the sensitizers. Despite slow recombination of photoinjected electrons with oxidized porphyrins, photocurrents are low because of low injection yields and slow electron self-exchange between oxidized porphyrins. The free-base porphyrins are stable under conditions of water photoelectrolysis and in some cases photovoltages in excess of 1 V are observed.

20.
J Am Chem Soc ; 136(31): 10974-82, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25068176

RESUMEN

Water-splitting dye-sensitized photoelectrochemical (WS-DSPECs) cells employ molecular sensitizers to absorb light and transport holes across the TiO2 surface to colloidal or molecular water oxidation catalysts. As hole diffusion occurs along the surface, electrons are transported through the mesoporous TiO2 film. In this paper we report the effects of electron trapping and protonation in the TiO2 film on the dynamics of electron and hole transport in WS-DSPECs. When the sensitizer bis(2,2'-bipyridine)(4,4'-diphosphonato-2,2'-bipyridine)ruthenium(II) is adsorbed from aqueous acid instead of from ethanol, there is more rapid hole transfer between photo-oxidized sensitizer molecules that are adsorbed from strong acid. However, the photocurrent and open-circuit photovoltage are dramatically lower with sensitizers adsorbed from acid because intercalated protons charge-compensate electron traps in the TiO2 film. Kinetic modeling of the photocurrent shows that electron trapping is responsible for the rapid electrode polarization that is observed in all WS-DSPECs. Electrochemical impedance spectroscopy suggests that proton intercalation also plays an important role in the slow degradation of WS-DSPECs, which generate protons at the anode as water is oxidized to oxygen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...