Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2642, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156840

RESUMEN

Cell-selective proteomics is a powerful emerging concept to study heterocellular processes in tissues. However, its high potential to identify non-cell-autonomous disease mechanisms and biomarkers has been hindered by low proteome coverage. Here, we address this limitation and devise a comprehensive azidonorleucine labeling, click chemistry enrichment, and mass spectrometry-based proteomics and secretomics strategy to dissect aberrant signals in pancreatic ductal adenocarcinoma (PDAC). Our in-depth co-culture and in vivo analyses cover more than 10,000 cancer cell-derived proteins and reveal systematic differences between molecular PDAC subtypes. Secreted proteins, such as chemokines and EMT-promoting matrisome proteins, associated with distinct macrophage polarization and tumor stromal composition, differentiate classical and mesenchymal PDAC. Intriguingly, more than 1,600 cancer cell-derived proteins including cytokines and pre-metastatic niche formation-associated factors in mouse serum reflect tumor activity in circulation. Our findings highlight how cell-selective proteomics can accelerate the discovery of diagnostic markers and therapeutic targets in cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Proteómica , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patología , Proteoma/metabolismo , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas
2.
Cancer Immunol Res ; 10(4): 482-497, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35362044

RESUMEN

Communication between tumors and the stroma of tumor-draining lymph nodes (TDLN) exists before metastasis arises, altering the structure and function of the TDLN niche. Transcriptional profiling of fibroblastic reticular cells (FRC), the dominant stromal population of lymph nodes, has revealed that FRCs in TDLNs are reprogrammed. However, the tumor-derived factors driving the changes in FRCs remain to be identified. Taking an unbiased approach, we have shown herein that lactic acid (LA), a metabolite released by cancer cells, was not only secreted by B16.F10 and 4T1 tumors in high amounts, but also that it was enriched in TDLNs. LA supported an upregulation of Podoplanin (Pdpn) and Thy1 and downregulation of IL7 in FRCs of TDLNs, making them akin to activated fibroblasts found at the primary tumor site. Furthermore, we found that tumor-derived LA altered mitochondrial function of FRCs in TDLNs. Thus, our results demonstrate a mechanism by which a tumor-derived metabolite connected with a low pH environment modulates the function of fibroblasts in TDLNs. How lymph node function is perturbed to support cancer metastases remains unclear. The authors show that tumor-derived LA drains to lymph nodes where it modulates the function of lymph node stromal cells, prior to metastatic colonization.


Asunto(s)
Ácido Láctico , Neoplasias , Fibroblastos , Humanos , Ácido Láctico/metabolismo , Ganglios Linfáticos/patología , Neoplasias/patología
3.
Nat Cancer ; 3(3): 318-336, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35122074

RESUMEN

KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) is highly immunosuppressive and resistant to targeted and immunotherapies. Among the different PDAC subtypes, basal-like mesenchymal PDAC, which is driven by allelic imbalance, increased gene dosage and subsequent high expression levels of oncogenic KRAS, shows the most aggressive phenotype and strongest therapy resistance. In the present study, we performed a systematic high-throughput combination drug screen and identified a synergistic interaction between the MEK inhibitor trametinib and the multi-kinase inhibitor nintedanib, which targets KRAS-directed oncogenic signaling in mesenchymal PDAC. This combination treatment induces cell-cycle arrest and cell death, and initiates a context-dependent remodeling of the immunosuppressive cancer cell secretome. Using a combination of single-cell RNA-sequencing, CRISPR screens and immunophenotyping, we show that this combination therapy promotes intratumor infiltration of cytotoxic and effector T cells, which sensitizes mesenchymal PDAC to PD-L1 immune checkpoint inhibition. Overall, our results open new avenues to target this aggressive and therapy-refractory mesenchymal PDAC subtype.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pancreáticas/tratamiento farmacológico , Microambiente Tumoral
4.
Cell Rep ; 34(10): 108826, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33691121

RESUMEN

A major pathway for proinflammatory protein release by macrophages is inflammasome-mediated pyroptotic cell death. As conventional secretion, unconventional secretion, and cell death are executed simultaneously, however, the cellular mechanisms regulating this complex paracrine program remain incompletely understood. Here, we devise a quantitative proteomics strategy to define the cellular exit route for each protein by pharmacological and genetic dissection of cellular checkpoints regulating protein release. We report the release of hundreds of proteins during pyroptosis, predominantly due to cell lysis. They comprise constitutively expressed and transcriptionally induced proteins derived from the cytoplasm and specific intracellular organelles. Many low-molecular-weight proteins including the cytokine interleukin-1ß, alarmins, and lysosomal-cargo proteins exit cells in the absence of cell lysis. Cytokines and alarmins are released in an endoplasmic reticulum (ER)-Golgi-dependent manner as free proteins rather than by extracellular vesicles. Our work provides an experimental framework for the dissection of cellular exit pathways and a resource for pyroptotic protein release.


Asunto(s)
Alarminas/análisis , Citocinas/análisis , Proteómica/métodos , Piroptosis , Adenosina Trifosfato/farmacología , Alarminas/metabolismo , Animales , Células Cultivadas , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Nigericina/farmacología , Espectrometría de Masas en Tándem
5.
Curr Opin Cell Biol ; 63: 20-30, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31927463

RESUMEN

Physiological functions depend on a coordinated interplay of numerous different cell types. Proteins serve as major signaling molecules between cells; however, their comprehensive investigation in physiologically relevant settings has remained challenging. Mass spectrometry (MS)-based shotgun proteomics is emerging as a powerful technology for the systematic analysis of protein-mediated intercellular signaling and regulated post-translational modifications. Here, we discuss recent advancements in cell biological, chemical, and biochemical MS-based approaches for the profiling of cellular messengers released by sending cells, receptors expressed on the cell surface, and their interactions. We highlight methods tailored toward the mapping of dynamic signal transduction mechanisms at cellular interfaces and approaches to dissect communication cell specifically in heterocellular systems. Thereby, MS-based proteomics contributes a unique systems biology perspective for the identification of intercellular signaling pathways deregulated in disease.


Asunto(s)
Espectrometría de Masas/métodos , Procesamiento Proteico-Postraduccional/genética , Proteómica/métodos , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA