Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766096

RESUMEN

Collagen fibrils are the primary supporting scaffold of vertebrate tissues but how they are assembled is unclear. Here, using CRISPR-tagging of type I collagen and SILAC labelling, we elucidate the cellular mechanism for the spatiotemporal assembly of collagen fibrils, in cultured fibroblasts. Our findings reveal multifaceted trafficking of collagen, including constitutive secretion, intracellular pooling, and plasma membrane-directed fibrillogenesis. Notably, we differentiate the processes of collagen secretion and fibril assembly and identify the crucial involvement of endocytosis in regulating fibril formation. By employing Col1a1 knockout fibroblasts we demonstrate the incorporation of exogenous collagen into nucleation sites at the plasma membrane through these recycling mechanisms. Our study sheds light on the assembly process and its regulation in health and disease. Mass spectrometry data are available via ProteomeXchange with identifier PXD036794.

2.
Biomater Adv ; 160: 213847, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657288

RESUMEN

Three-dimensional (3D) organoid models have been instrumental in understanding molecular mechanisms responsible for many cellular processes and diseases. However, established organic biomaterial scaffolds used for 3D hydrogel cultures, such as Matrigel, are biochemically complex and display significant batch variability, limiting reproducibility in experiments. Recently, there has been significant progress in the development of synthetic hydrogels for in vitro cell culture that are reproducible, mechanically tuneable, and biocompatible. Self-assembling peptide hydrogels (SAPHs) are synthetic biomaterials that can be engineered to be compatible with 3D cell culture. Here we investigate the ability of PeptiGel® SAPHs to model the mammary epithelial cell (MEC) microenvironment in vitro. The positively charged PeptiGel®Alpha4 supported MEC viability, but did not promote formation of polarised acini. Modifying the stiffness of PeptiGel® Alpha4 stimulated changes in MEC viability and changes in protein expression associated with altered MEC function, but did not fully recapitulate the morphologies of MECs grown in Matrigel. To supply the appropriate biochemical signals for MEC organoids, we supplemented PeptiGels® with laminin. Laminin was found to require negatively charged PeptiGel® Alpha7 for functionality, but was then able to provide appropriate signals for correct MEC polarisation and expression of characteristic proteins. Thus, optimisation of SAPH composition and mechanics allows tuning to support tissue-specific organoids.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Colágeno , Combinación de Medicamentos , Células Epiteliales , Hidrogeles , Laminina , Péptidos , Proteoglicanos , Laminina/farmacología , Laminina/química , Hidrogeles/química , Hidrogeles/farmacología , Proteoglicanos/farmacología , Proteoglicanos/química , Colágeno/química , Colágeno/farmacología , Péptidos/farmacología , Péptidos/química , Células Epiteliales/efectos de los fármacos , Células Epiteliales/citología , Humanos , Femenino , Técnicas de Cultivo Tridimensional de Células/métodos , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Glándulas Mamarias Humanas/citología , Organoides/efectos de los fármacos , Organoides/citología , Técnicas de Cultivo de Célula/métodos
3.
Bioessays ; 46(5): e2300223, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522027

RESUMEN

Ageing causes progressive decline in metabolic, behavioural, and physiological functions, leading to a reduced health span. The extracellular matrix (ECM) is the three-dimensional network of macromolecules that provides our tissues with structure and biomechanical resilience. Imbalance between damage and repair/regeneration causes the ECM to undergo structural deterioration with age, contributing to age-associated pathology. The ECM 'Ageing Across the Life Course' interdisciplinary research network (ECMage) was established to bring together researchers in the United Kingdom, and internationally, working on the emerging field of ECM ageing. Here we report on a consultation at a joint meeting of ECMage and the Medical Research Council / Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, held in January 2023, in which delegates analysed the key questions and research opportunities in the field of ECM ageing. We examine fundamental biological questions, enabling technologies, systems of study and emerging in vitro and in silico models, alongside consideration of the broader challenges facing the field.


Asunto(s)
Envejecimiento , Matriz Extracelular , Animales , Humanos , Matriz Extracelular/metabolismo , Reino Unido
4.
Trends Cell Biol ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38423854

RESUMEN

Proteins are molecular machines that provide structure and perform vital transport, signalling and enzymatic roles. Proteins expressed by cells require tight regulation of their concentration, folding, localisation, and modifications; however, this state of protein homeostasis is continuously perturbed by tissue-level stresses. While cells in healthy tissues are able to buffer against these perturbations, for example, by expression of chaperone proteins, protein homeostasis is lost in ageing, and can lead to protein aggregation characteristic of protein folding diseases. Here, we review reports of a progressive disconnect between transcriptomic and proteomic regulation during cellular ageing. We discuss how age-associated changes to cellular responses to specific stressors in the tissue microenvironment are exacerbated by loss of ribosomal proteins, ribosomal pausing, and mistranslation.

5.
Matrix Biol ; 124: 8-22, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37913834

RESUMEN

The circadian clock in tendon regulates the daily rhythmic synthesis of collagen-I and the appearance and disappearance of small-diameter collagen fibrils in the extracellular matrix. How the fibrils are assembled and removed is not fully understood. Here, we first showed that the collagenase, membrane type I-matrix metalloproteinase (MT1-MMP, encoded by Mmp14), is regulated by the circadian clock in postnatal mouse tendon. Next, we generated tamoxifen-induced Col1a2-Cre-ERT2::Mmp14 KO mice (Mmp14 conditional knockout (CKO)). The CKO mice developed hind limb dorsiflexion and thickened tendons, which accumulated narrow-diameter collagen fibrils causing ultrastructural disorganization. Mass spectrometry of control tendons identified 1195 proteins of which 212 showed time-dependent abundance. In Mmp14 CKO mice 19 proteins had reversed temporal abundance and 176 proteins lost time dependency. Among these, the collagen crosslinking enzymes lysyl oxidase-like 1 (LOXL1) and lysyl hydroxylase 1 (LH1; encoded by Plod2) were elevated and had lost time-dependent regulation. High-pressure chromatography confirmed elevated levels of hydroxylysine aldehyde (pyridinoline) crosslinking of collagen in CKO tendons. As a result, collagen-I was refractory to extraction. We also showed that CRISPR-Cas9 deletion of Mmp14 from cultured fibroblasts resulted in loss of circadian clock rhythmicity of period 2 (PER2), and recombinant MT1-MMP was highly effective at cleaving soluble collagen-I but less effective at cleaving collagen pre-assembled into fibrils. In conclusion, our study shows that circadian clock-regulated Mmp14 controls the rhythmic synthesis of small diameter collagen fibrils, regulates collagen crosslinking, and its absence disrupts the circadian clock and matrisome in tendon fibroblasts.


Asunto(s)
Colágeno , Metaloproteinasa 14 de la Matriz , Animales , Ratones , Ritmo Circadiano , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Homeostasis , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo
6.
J Cell Sci ; 136(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37732478

RESUMEN

The Golgi complex comprises a connected ribbon of stacked cisternal membranes localized to the perinuclear region in most vertebrate cells. The position and morphology of this organelle depends upon interactions with microtubules and the actin cytoskeleton. In contrast, we know relatively little about the relationship of the Golgi complex with intermediate filaments (IFs). In this study, we show that the Golgi is in close physical proximity to vimentin IFs in cultured mouse and human cells. We also show that the trans-Golgi network coiled-coil protein GORAB can physically associate with vimentin IFs. Loss of vimentin and/or GORAB had a modest effect upon Golgi structure at the steady state. The Golgi underwent more rapid disassembly upon chemical disruption with brefeldin A or nocodazole, and slower reassembly upon drug washout, in vimentin knockout cells. Moreover, loss of vimentin caused reduced Golgi ribbon integrity when cells were cultured on high-stiffness hydrogels, which was exacerbated by loss of GORAB. These results indicate that vimentin IFs contribute to the structural stability of the Golgi complex and suggest a role for GORAB in this process.


Asunto(s)
Citoesqueleto , Filamentos Intermedios , Ratones , Humanos , Animales , Filamentos Intermedios/metabolismo , Vimentina/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Aparato de Golgi/metabolismo , Mamíferos/metabolismo
7.
Am J Physiol Cell Physiol ; 325(1): C52-C59, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37246635

RESUMEN

The extracellular matrix (ECM) is the noncellular scaffolding component present within all tissues and organs. It provides crucial biochemical and biomechanical cues to instruct cellular behavior and has been shown to be under circadian clock regulation, a highly conserved cell-intrinsic timekeeping mechanism that has evolved with the 24-hour rhythmic environment. Aging is a major risk factor for many diseases, including cancer, fibrosis, and neurodegenerative disorders. Both aging and our modern 24/7 society disrupt circadian rhythms, which could contribute to altered ECM homeostasis. Understanding the daily dynamics of ECM and how this mechanism changes with age will have a profound impact on tissue health, disease prevention, and improving treatments. Maintaining rhythmic oscillations has been proposed as a hallmark of health. On the other hand, many hallmarks of aging turn out to be key regulators of circadian timekeeping mechanisms. In this review, we summarize new work linking the ECM with circadian clocks and tissue aging. We discuss how the changes in the biomechanical and biochemical properties of ECM during aging may contribute to circadian clock dysregulation. We also consider how the dampening of clocks with age could compromise the daily dynamic regulation of ECM homeostasis in matrix-rich tissues. This review aims to encourage new concepts and testable hypotheses about the two-way interactions between circadian clocks and ECM in the context of aging.


Asunto(s)
Relojes Circadianos , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Homeostasis , Matriz Extracelular
8.
Proc Natl Acad Sci U S A ; 120(14): e2210745120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36989307

RESUMEN

Cells respond to stress by synthesizing chaperone proteins that seek to correct protein misfolding and maintain function. However, abrogation of protein homeostasis is a hallmark of aging, leading to loss of function and the formation of proteotoxic aggregates characteristic of pathology. Consequently, discovering the underlying molecular causes of this deterioration in proteostasis is key to designing effective interventions to disease or to maintaining cell health in regenerative medicine strategies. Here, we examined primary human mesenchymal stem cells, cultured to a point of replicative senescence and subjected to heat shock, as an in vitro model of the aging stress response. Multi -omics analysis showed how homeostasis components were reduced in senescent cells, caused by dysregulation of a functional network of chaperones, thereby limiting proteostatic competence. Time-resolved analysis of the primary response factors, including those regulating heat shock protein 70 kDa (HSPA1A), revealed that regulatory control is essentially translational. Senescent cells have a reduced capacity for chaperone protein translation and misfolded protein (MFP) turnover, driven by downregulation of ribosomal proteins and loss of the E3 ubiquitin ligase CHIP (C-terminus of HSP70 interacting protein) which marks MFPs for degradation. This limits the cell's stress response and subsequent recovery. A kinetic model recapitulated these reduced capacities and predicted an accumulation of MFP, a hypothesis supported by evidence of systematic changes to the proteomic fold state. These results thus establish a specific loss of regulatory capacity at the protein, rather than transcript, level and uncover underlying systematic links between aging and loss of protein homeostasis.


Asunto(s)
Células Madre Mesenquimatosas , Proteómica , Humanos , Envejecimiento , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Biosíntesis de Proteínas , Células Madre Mesenquimatosas/metabolismo
9.
Polymers (Basel) ; 14(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36559706

RESUMEN

Cell function can be directly influenced by the mechanical and structural properties of the extracellular environment. In particular, cell morphology and phenotype can be regulated via the modulation of both the stiffness and surface topography of cell culture substrates. Previous studies have highlighted the ability to design cell culture substrates to optimise cell function. Many such examples, however, employ photo-crosslinkable polymers with a terminal stiffness or surface profile. This study presents a system of polyacrylamide hydrogels, where the surface topography can be tailored and the matrix stiffness can be altered in situ with photoirradiation. The process allows for the temporal regulation of the extracellular environment. Specifically, the surface topography can be tailored via reticulation parameters to include creased features with control over the periodicity, length and branching. The matrix stiffness can also be dynamically tuned via exposure to an appropriate dosage and wavelength of light, thus, allowing for the temporal regulation of the extracellular environment. When cultured on the surface of the hydrogels, the morphology and alignment of immortalised human mesenchymal stem cells can be directly influenced through the tailoring of surface creases, while cell size can be altered via changes in matrix stiffness. This system offers a new platform to study cellular mechanosensing and the influence of extracellular cues on cell phenotype and function.

10.
Heliyon ; 8(11): e11362, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36387443

RESUMEN

Epigenetic dysregulation is a key feature of most acute myeloid leukemia (AML). Recently, it has become clear that long noncoding RNAs (lncRNAs) can play a key role in epigenetic regulation, and consequently also dysregulation. Currently, our understanding of the requirements and roles of lncRNAs in AML is still limited. Here, using CRISPRi screening, we identified the lncRNA SGOL1-AS1 as an essential regulator of survival in THP-1 AML cells. We demonstrated that SGOL1-AS1 interacts with chromatin-modifying proteins involved in gene repression and that SGOL1-AS1 knockdown is associated with increased heterochromatin formation. We also observed that loss of SGOLl-AS1 results in increased apoptosis and the downregulation of pro-inflammatory genes. In AML patients, high expression of SGOL1-AS1 correlates with both pro-inflammatory gene expression and poor survival. Altogether, our data reveal that SGOL1-AS1 is an essential regulator of cell survival in AML cell lines and a possible regulator of pro-inflammatory signaling in AML patients.

11.
Aging Cell ; 20(5): e13355, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33830638

RESUMEN

Although dysfunctional protein homeostasis (proteostasis) is a key factor in many age-related diseases, the untargeted identification of structurally modified proteins remains challenging. Peptide location fingerprinting is a proteomic analysis technique capable of identifying structural modification-associated differences in mass spectrometry (MS) data sets of complex biological samples. A new webtool (Manchester Peptide Location Fingerprinter), applied to photoaged and intrinsically aged skin proteomes, can relatively quantify peptides and map statistically significant differences to regions within protein structures. New photoageing biomarker candidates were identified in multiple pathways including extracellular matrix organisation (collagens and proteoglycans), protein synthesis and folding (ribosomal proteins and TRiC complex subunits), cornification (keratins) and hemidesmosome assembly (plectin and integrin α6ß4). Crucially, peptide location fingerprinting uniquely identified 120 protein biomarker candidates in the dermis and 71 in the epidermis which were modified as a consequence of photoageing but did not differ significantly in relative abundance (measured by MS1 ion intensity). By applying peptide location fingerprinting to published MS data sets, (identifying biomarker candidates including collagen V and versican in ageing tendon) we demonstrate the potential of the MPLF webtool for biomarker discovery.


Asunto(s)
Mapeo Peptídico/métodos , Proteómica/métodos , Envejecimiento de la Piel , Piel/química , Anciano , Biomarcadores/química , Cromatografía Liquida , Matriz Extracelular/química , Hemidesmosomas/química , Humanos , Queratinas/metabolismo , Persona de Mediana Edad , Péptidos/análisis , Biosíntesis de Proteínas , Proteoma/química , Envejecimiento de la Piel/efectos de la radiación , Programas Informáticos , Espectrometría de Masas en Tándem
12.
Cell Death Dis ; 11(10): 872, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067418

RESUMEN

Apoptotic priming controls the commitment of cells to apoptosis by determining how close they lie to mitochondrial permeabilisation. Variations in priming are important for how both healthy and cancer cells respond to chemotherapeutic agents, but how it is dynamically coordinated by Bcl-2 proteins remains unclear. The Bcl-2 family protein Bid is phosphorylated when cells enter mitosis, increasing apoptotic priming and sensitivity to antimitotic drugs. Here, we report an unbiased proximity biotinylation (BioID) screen to identify regulators of apoptotic priming in mitosis, using Bid as bait. The screen primarily identified proteins outside of the canonical Bid interactome. Specifically, we found that voltage-dependent anion-selective channel protein 2 (VDAC2) was required for Bid phosphorylation-dependent changes in apoptotic priming during mitosis. These results highlight the importance of the wider Bcl-2 family interactome in regulating the temporal control of apoptotic priming.


Asunto(s)
Apoptosis/fisiología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Ciclo Celular/fisiología , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Biotinilación/métodos , Humanos , Mitocondrias/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
13.
Clin Proteomics ; 17: 24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32565759

RESUMEN

BACKGROUND: Haematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. METHODS: Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm3) and human lung blood vessels (0.094 mm3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. RESULTS: This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm3. CONCLUSION: Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.

14.
J Proteome Res ; 19(6): 2167-2184, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32319298

RESUMEN

Multivariate regression modelling provides a statistically powerful means of quantifying the effects of a given treatment while compensating for sources of variation and noise, such as variability between human donors and the behavior of different peptides during mass spectrometry. However, methods to quantify endogenous post-translational modifications (PTMs) are typically reliant on summary statistical methods that fail to consider sources of variability such as changes in the levels of the parent protein. Here, we compare three multivariate regression methods, including a novel Bayesian elastic net algorithm (BayesENproteomics) that enables assessment of relative protein abundances while also quantifying identified PTMs for each protein. We tested the ability of these methods to accurately quantify expression of proteins in a mixed-species benchmark experiment and to quantify synthetic PTMs induced by stable isotope labelling. Finally, we extended our regression pipeline to calculate fold changes at the pathway level, providing a complement to commonly used enrichment analysis. Our results show that BayesENproteomics can quantify changes to protein levels across a broad dynamic range while also accurately quantifying PTM and pathway-level fold changes.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Teorema de Bayes , Humanos , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional
15.
Nat Cell Biol ; 22(1): 74-86, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31907414

RESUMEN

Collagen is the most abundant secreted protein in vertebrates and persists throughout life without renewal. The permanency of collagen networks contrasts with both the continued synthesis of collagen throughout adulthood and the conventional transcriptional/translational homeostatic mechanisms that replace damaged proteins with new copies. Here, we show circadian clock regulation of endoplasmic reticulum-to-plasma membrane procollagen transport by the sequential rhythmic expression of SEC61, TANGO1, PDE4D and VPS33B. The result is nocturnal procollagen synthesis and daytime collagen fibril assembly in mice. Rhythmic collagen degradation by CTSK maintains collagen homeostasis. This circadian cycle of collagen synthesis and degradation affects a pool of newly synthesized collagen, while maintaining the persistent collagen network. Disabling the circadian clock causes abnormal collagen fibrils and collagen accumulation, which are reduced in vitro by the NR1D1 and CRY1/2 agonists SR9009 and KL001, respectively. In conclusion, our study has identified a circadian clock mechanism of protein homeostasis wherein a sacrificial pool of collagen maintains tissue function.


Asunto(s)
Relojes Circadianos/fisiología , Colágeno/metabolismo , Homeostasis/fisiología , Vías Secretoras/fisiología , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/efectos de los fármacos , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Carbazoles/farmacología , Colágeno/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Matriz Extracelular/metabolismo , Ratones Transgénicos , Pirrolidinas/farmacología , Canales de Translocación SEC/efectos de los fármacos , Canales de Translocación SEC/metabolismo , Vías Secretoras/genética , Sulfonamidas/farmacología , Tiofenos/farmacología , Proteínas de Transporte Vesicular/efectos de los fármacos , Proteínas de Transporte Vesicular/metabolismo
16.
Dev Cell ; 51(4): 460-475.e10, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31607653

RESUMEN

In development, wound healing, and cancer metastasis, vertebrate cells move through 3D interstitial matrix, responding to chemical and physical guidance cues. Protrusion at the cell front has been extensively studied, but the retraction phase of the migration cycle is not well understood. Here, we show that fast-moving cells guided by matrix cues establish positive feedback control of rear retraction by sensing membrane tension. We reveal a mechanism of rear retraction in 3D matrix and durotaxis controlled by caveolae, which form in response to low membrane tension at the cell rear. Caveolae activate RhoA-ROCK1/PKN2 signaling via the RhoA guanidine nucleotide exchange factor (GEF) Ect2 to control local F-actin organization and contractility in this subcellular region and promote translocation of the cell rear. A positive feedback loop between cytoskeletal signaling and membrane tension leads to rapid retraction to complete the migration cycle in fast-moving cells, providing directional memory to drive persistent cell migration in complex matrices.


Asunto(s)
Movimiento Celular/fisiología , Seudópodos/fisiología , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Caveolas/fisiología , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/fisiología , Polaridad Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/fisiología , Citoesqueleto/metabolismo , Citosol/metabolismo , Matriz Extracelular/metabolismo , Humanos , Ratones , Proteína Quinasa C/metabolismo , Seudópodos/metabolismo , Ratas , Transducción de Señal , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
17.
J Biol Chem ; 294(46): 17395-17408, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31586031

RESUMEN

Piezo1 is a mechanosensitive cation channel with widespread physiological importance; however, its role in the heart is poorly understood. Cardiac fibroblasts help preserve myocardial integrity and play a key role in regulating its repair and remodeling following stress or injury. Here we investigated Piezo1 expression and function in cultured human and mouse cardiac fibroblasts. RT-PCR experiments confirmed that Piezo1 mRNA in cardiac fibroblasts is expressed at levels similar to those in endothelial cells. The results of a Fura-2 intracellular Ca2+ assay validated Piezo1 as a functional ion channel that is activated by its agonist, Yoda1. Yoda1-induced Ca2+ entry was inhibited by Piezo1 blockers (gadolinium and ruthenium red) and was reduced proportionally by siRNA-mediated Piezo1 knockdown or in murine Piezo1+/- cells. Results from cell-attached patch clamp recordings on human cardiac fibroblasts established that they contain mechanically activated ion channels and that their pressure responses are reduced by Piezo1 knockdown. Investigation of Yoda1 effects on selected remodeling genes indicated that Piezo1 activation increases both mRNA levels and protein secretion of IL-6, a pro-hypertrophic and profibrotic cytokine, in a Piezo1-dependent manner. Moreover, Piezo1 knockdown reduced basal IL-6 expression from cells cultured on softer collagen-coated substrates. Multiplex kinase activity profiling combined with kinase inhibitor experiments and phosphospecific immunoblotting established that Piezo1 activation stimulates IL-6 secretion via the p38 mitogen-activated protein kinase downstream of Ca2+ entry. In summary, cardiac fibroblasts express mechanically activated Piezo1 channels coupled to secretion of the paracrine signaling molecule IL-6. Piezo1 may therefore be important in regulating cardiac remodeling.


Asunto(s)
Interleucina-6/genética , Canales Iónicos/genética , Miocardio/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Señalización del Calcio/genética , Endopeptidasas/genética , Células Endoteliales/química , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-6/química , Canales Iónicos/química , Sistema de Señalización de MAP Quinasas/genética , Mecanotransducción Celular/genética , Ratones , Miocardio/química , Fosforilación/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Tioléster Hidrolasas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/química
18.
Nat Commun ; 10(1): 4149, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31515493

RESUMEN

Studies of cellular mechano-signaling have often utilized static models that do not fully replicate the dynamics of living tissues. Here, we examine the time-dependent response of primary human mesenchymal stem cells (hMSCs) to cyclic tensile strain (CTS). At low-intensity strain (1 h, 4% CTS at 1 Hz), cell characteristics mimic responses to increased substrate stiffness. As the strain regime is intensified (frequency increased to 5 Hz), we characterize rapid establishment of a broad, structured and reversible protein-level response, even as transcription is apparently downregulated. Protein abundance is quantified coincident with changes to protein conformation and post-translational modification (PTM). Furthermore, we characterize changes to the linker of nucleoskeleton and cytoskeleton (LINC) complex that bridges the nuclear envelope, and specifically to levels and PTMs of Sad1/UNC-84 (SUN) domain-containing protein 2 (SUN2). The result of this regulation is to decouple mechano-transmission between the cytoskeleton and the nucleus, thus conferring protection to chromatin.


Asunto(s)
Núcleo Celular/metabolismo , Células Madre Mesenquimatosas/citología , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Fenómenos Biomecánicos , Forma del Núcleo Celular , Cromatina/metabolismo , Citoesqueleto/metabolismo , Daño del ADN , Histonas/metabolismo , Humanos , Canales Iónicos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Modelos Biológicos , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Mecánico , Resistencia a la Tracción
19.
Exp Cell Res ; 378(1): 98-103, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30836065

RESUMEN

The ageing process is a progressive decrease in physiological function, caused by accruement of damage and misregulation in the cells and tissues of an organism. Human ageing has been the focus of much scientific investigation, but studies have been complicated by the variability of the process between subjects and the slow pace at which it occurs. Although the consequences of ageing on cellular biochemical signalling and metabolism have been well studied, the impact on the mechanical properties of cells and the extracellular matrix - and the mechanotransduction pathways that connect the two - have often been overlooked. In this review we will discuss recent advances in the fields of nuclear and cytoskeletal biophysics, and consider this work in the context of ageing. In particular, we will examine the role of the nucleus in cellular mechanotransduction and in 'age-related diseases/phenomena' such as progeria and cellular senescence. Finally, we will discuss the therapeutic options being explored, drawing attention to a new field of medicine termed 'mechano-medicine' that may prove useful in addressing age-related pathology.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Mecanotransducción Celular , Progeria/metabolismo , Envejecimiento/genética , Animales , Núcleo Celular/metabolismo , Humanos , Progeria/genética , Progeria/patología
20.
Nat Cell Biol ; 21(3): 348-358, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30742093

RESUMEN

Vertebrate tissues exhibit mechanical homeostasis, showing stable stiffness and tension over time and recovery after changes in mechanical stress. However, the regulatory pathways that mediate these effects are unknown. A comprehensive identification of Argonaute 2-associated microRNAs and mRNAs in endothelial cells identified a network of 122 microRNA families that target 73 mRNAs encoding cytoskeletal, contractile, adhesive and extracellular matrix (CAM) proteins. The level of these microRNAs increased in cells plated on stiff versus soft substrates, consistent with homeostasis, and suppressed targets via microRNA recognition elements within the 3' untranslated regions of CAM mRNAs. Inhibition of DROSHA or Argonaute 2, or disruption of microRNA recognition elements within individual target mRNAs, such as connective tissue growth factor, induced hyper-adhesive, hyper-contractile phenotypes in endothelial and fibroblast cells in vitro, and increased tissue stiffness, contractility and extracellular matrix deposition in the zebrafish fin fold in vivo. Thus, a network of microRNAs buffers CAM expression to mediate tissue mechanical homeostasis.


Asunto(s)
Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Regiones no Traducidas 3' , Aletas de Animales/metabolismo , Animales , Línea Celular , Células Cultivadas , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Homeostasis/genética , Humanos , Ratones Endogámicos C57BL , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...