Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 230: 123118, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599383

RESUMEN

Bacterial cellulose (BC) is a biopolymer that commonly used for wound dressings regarding to its high in-vitro and in-vivo biocompatibility. Moreover, the three-dimensional fibers in BC become an advantageous for bioactive wound dressing application as they serve as templates for impregnation other supportive materials. Chitosan and collagen are two of the materials that can be impregnated to optimize the BC properties for serve as wound dressing material. Collagen can help skin cells grow on the wound sites, where chitosan has anti-bacterial properties and can bind red blood cells. BC-based wound dressings were made by impregnating collagen via in-situ method followed by immersing chitosan via ex-situ method into BC fibers for 24 h. The intermolecular interactions of amine groups in the wound dressing were confirmed by FTIR. The XRD diffractogram showed wider peaks at 14.2°, 16.6°, and 22.4° due to the presence of collagen and chitosan molecules in the BC fibers. SEM images confirmed that chitosan and collagen could penetrate BC fibers well. Other tests, such as water content, porosity, antibacterial properties, and haemocompatibility, indicated that the wound dressing was non-hemolytic. In-vivo test indicated that BC/collagen/chitosan wound dressing supported the wound healing process on second degree burn.


Asunto(s)
Quemaduras , Quitosano , Humanos , Celulosa/metabolismo , Colágeno , Antibacterianos/farmacología , Quemaduras/terapia , Vendajes
2.
Pharmaceutics ; 14(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36559309

RESUMEN

The need for more advantageous and pharmaceutically active wound dressings is a pressing matter in the area of wound management. In this study, we explore the possibility of incorporating thymoquinone within bacterial cellulose, utilising cyclodextrins as a novel method of solubilising hydrophobic compounds. The thymoquinone was not soluble in water, so was incorporated within hydroxypropyl-ß-cyclodextrin before use. Thymoquinone: hydroxypropyl-ß-cyclodextrin inclusion complex produced was found to be soluble in water up to 7% (w/v) and was stable with no crystal formation for at least 7 days with the ability to be loaded within the bacterial cellulose matrix. The inclusion complex was found to be thermally stable up to 280 °C which is far greater than the production temperature of 80 °C and was stable in phosphate-buffered saline and extraction solvents in permeation and dose experiments. The adhesion properties of the Thymoquinone: hydroxypropyl-ß-cyclodextrin loaded bacterial cellulose dressings were tested and found to be 2.09 N. Permeation studies on skin mimicking membrane Strat-M showed a total permeated amount (0-24 h) of 538.8 µg cm-2 and average flux after a 2 h lag of 22.4 µg h-1 cm-2. To the best of our knowledge, the methods outlined in this study are the first instance of loading bacterial cellulose with thymoquinone inclusion complex with the aim of producing a pharmaceutically active wound dressing.

3.
Materials (Basel) ; 14(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070218

RESUMEN

An increase in antifungal resistance has seen a surge in fungal wound infections in patients who are immunocompromised resulting from chemotherapy, disease, and burns. Human pathogenic fungi are increasingly becoming resistant to a sparse repertoire of existing antifungal drugs, which has given rise to the need to develop novel treatments for potentially lethal infections. Bacterial cellulose (BC) produced by Gluconacetobacter xylinus has been shown to possess many properties that make it innately useful as a next-generation biopolymer to be utilised as a wound dressing. The current study demonstrates the creation of a pharmacologically active wound dressing by loading antifungal agents into a biopolymer hydrogel to produce a novel wound dressing. Amphotericin B is known to be highly hepatotoxic, which reduces its appeal as an antifungal drug, especially in patients who are immunocompromised. This, coupled with an increase in antifungal resistance, has seen a surge in fungal wound infections in patients who are immunodeficient due to chemotherapy, disease, or injury. Antifungal activity was conducted via Clinical & Laboratory Standards Institute (CLSI) M27, M38, M44, and M51 against Candida auris, Candida albicans, Aspergillus fumigatus, and Aspergillus niger. This study showed that thymoquinone has a comparable antifungal activity to amphotericin B with mean zones of inhibition of 21.425 ± 0.925 mm and 22.53 ± 0.969 mm, respectively. However, the mean survival rate of HEp-2 cells when treated with 50 mg/L amphotericin B was 29.25 ± 0.854% compared to 71.25 ± 1.797% when treated with 50 mg/L thymoquinone. Following cytotoxicity assays against HEp-2 cells, thymoquinone showed a 71.25 ± 3.594% cell survival, whereas amphotericin B had a mean cell survival rate of 29.25 ± 1.708%. The purpose of this study was to compare the efficacy of thymoquinone, ocimene, and miramistin against amphotericin B in the application of novel antifungal dressings.

4.
Polymers (Basel) ; 13(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525406

RESUMEN

Bacterial cellulose (BC) is an extracellular polymer produced by Komagateibacter xylinus, which has been shown to possess a multitude of properties, which makes it innately useful as a next-generation biopolymer. The structure of BC is comprised of glucose monomer units polymerised by cellulose synthase in ß-1-4 glucan chains which form uniaxially orientated BC fibril bundles which measure 3-8 nm in diameter. BC is chemically identical to vegetal cellulose. However, when BC is compared with other natural or synthetic analogues, it shows a much higher performance in biomedical applications, potable treatment, nano-filters and functional applications. The main reason for this superiority is due to the high level of chemical purity, nano-fibrillar matrix and crystallinity. Upon using BC as a carrier or scaffold with other materials, unique and novel characteristics can be observed, which are all relatable to the features of BC. These properties, which include high tensile strength, high water holding capabilities and microfibrillar matrices, coupled with the overall physicochemical assets of bacterial cellulose makes it an ideal candidate for further scientific research into biopolymer development. This review thoroughly explores several areas in which BC is being investigated, ranging from biomedical applications to electronic applications, with a focus on the use as a next-generation wound dressing. The purpose of this review is to consolidate and discuss the most recent advancements in the applications of bacterial cellulose, primarily in biomedicine, but also in biotechnology.

5.
Biomacromolecules ; 21(5): 1802-1811, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-31967794

RESUMEN

Chronic wounds are often recalcitrant to treatment because of high microbial bioburden and the problem of microbial resistance. Silver is a broad-spectrum natural antimicrobial agent with wide applications extending to proprietary wound dressings. Recently, silver nanoparticles have attracted attention in wound management. In the current study, the green synthesis of nanoparticles was accomplished using a natural reducing agent, curcumin, which is a natural polyphenolic compound that is well-known as a wound-healing agent. The hydrophobicity of curcumin was overcome by its microencapsulation in cyclodextrins. This study demonstrates the production, characterization of silver nanoparticles using aqueous curcumin:hydroxypropyl-ß-cyclodextrin complex and loading them into bacterial cellulose hydrogel with moist wound-healing properties. These silver nanoparticle-loaded bacterial cellulose hydrogels were characterized for wound-management applications. In addition to high cytocompatibility, these novel dressings exhibited antimicrobial activity against three common wound-infecting pathogenic microbes Staphylococcus aureus, Pseudomonas aeruginosa, and Candida auris.


Asunto(s)
Curcumina , Ciclodextrinas , Nanopartículas del Metal , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Vendajes , Celulosa , Hidrogeles , Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...