Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol ; 272(5 Pt 1): L908-15, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9176256

RESUMEN

Type II pulmonary epithelial cells (T2P) in primary culture assemble a biologically active extracellular matrix (ECM) from endogenously synthesized components, including fibronectin. Fibronectin is a well-recognized attachment protein that mediates cell adhesion, migration, and cytodifferentiation. In some cell types, exogenous fibronectin also is incorporated into ECM. The latter pathway of ECM assembly was thus investigated in T2P. Cells were cultured for 3-days in Dulbecco's modified Eagle's medium (DMEM) with or without 10% fetal calf serum (FCS), a source of exogenous fibronectin. Cell and matrix fractions were harvested on culture days 1, 2, and 3 to determine synthesis of cell and matrix proteins and matrix fibronectin content. During 3 days in DMEM containing 10% FCS, T2P flattened and spread to confluence more rapidly than cells in DMEM; they also produced ECM with higher fibronectin content than did cells in DMEM alone. On culture days 2 and 3, 10% FCS doubled (on average) synthesis of ECM fibronectin; in contrast, ECM fibronectin content increased nearly 10-fold. These observations suggest that cultured type II cells incorporate exogenous fibronectin into newly assembled ECM to a greater extent than the newly synthesized glycoprotein. Components of both endogenous and exogenous origin may therefore contribute to T2P assembly of a biologically active ECM.


Asunto(s)
Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Alveolos Pulmonares/metabolismo , Animales , Células Cultivadas , Células Epiteliales , Epitelio/metabolismo , Masculino , Metionina/metabolismo , Alveolos Pulmonares/citología , Ratas , Ratas Sprague-Dawley
3.
Neurochem Int ; 8(1): 23-9, 1986.
Artículo en Inglés | MEDLINE | ID: mdl-20493025

RESUMEN

Studies were conducted to investigate relationships among soman (pinacolyl methylphosphonofluoridate) induced seizure activity, central metabolic impairments and lethality in normal vs thyroid-deficient rats. Quantitative cytophotometric measurements of individual cerebrocortical (layer V) and striatal neuron RNA contents were made following dosages of 0.5, 0.9 and 1.5 LD(50) soman (LD(50) = 135 ?g/kg, sc). Hypothyroidism was associated with a marked diminution of overt convulsive activity and reduced susceptibility to lethal actions of soman as indicated by enhanced 24- and 48-h survival rates at 0.9, 1.2 and 1.5 LD(50). Hypothyroidism per se produced RNA depletion in both cortical and striatal neurons. Soman treatment diminished cortical RNA to essentially the same extent in thyroid-deficient rats as in euthyroids, whereas there was no further reduction of striatal neuron RNA. It was found that amelioration of convulsive activity and lethal- ity in hypothyroid rats was accompanied by reduced cerebral acetylcholinesterase (AChE, EC 3.1.1.7) inactivation, and that plasma cholinesterase (EC 3.1.1.8) and aliesterase (EC 3.1.1.1) levels were significantly higher in hypothyroid than in euthyroid saline-control rats. The overall data indicate that soman- induced central metabolic impairments can occur independent of paroxysmal neural activity and lethal actions of the agent. Resistance to soman observed with thyroid deficiency may be due in large part to increased binding to plasma enzymes and diminished delivery of soman to AChE in vital cholinergic sites.

4.
Cell Biochem Funct ; 2(4): 237-42, 1984 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-6083836

RESUMEN

Myocardial nucleic acid responses were analysed in New Zealand White rabbits 20 min-1 h and 6-8 h following single subcutaneous injections of soman (20, 30, or 40 micrograms kg-1). Scanning-integrating microdensitometry was used to quantify Azure B-RNA and Feulgen-DNA (F-DNA) levels, and changes in the susceptibility of chromatin to Feulgen acid hydrolysis (F-DNA reactivity) of individual ventricular myocardial cells. With a dosage of 20 micrograms kg-1 soman, no RNA alterations were evidenced at 1 h whereas at 6-8 h myocardial cells exhibited higher RNA levels and an increase in F-DNA reactivity of chromatin. With dosages of 30 and 40 micrograms kg-1 soman there was an augmentation in RNA levels and in the acid hydrolysability of nuclear chromatin at both 20 min-1 h and 6-8 h. It is postulated that the observed cellular transformations represent a compensatory augmentation in myocardial metabolic functioning presumably in response to an increased functional demand on the ventricular myocardium. The absence of cytopathic or cytochemical evidence of impairment in nucleic acid metabolism is inconsistent with the premise that soman exerts direct cytotoxic effects on rabbit myocardium.


Asunto(s)
Corazón/efectos de los fármacos , Ácidos Nucleicos/metabolismo , Compuestos Organofosforados/toxicidad , Colorantes de Rosanilina , Soman/toxicidad , Animales , Colorantes Azulados , Colinesterasas/sangre , Cromatina/efectos de los fármacos , Colorantes , ADN/análisis , Miocardio/ultraestructura , ARN/análisis , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...