Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 4(4): 605-20, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25801507

RESUMEN

Human embryonic stem cell (hESC)-derived pancreatic progenitor cells effectively reverse hyperglycemia in rodent models of type 1 diabetes, but their capacity to treat type 2 diabetes has not been reported. An immunodeficient model of type 2 diabetes was generated by high-fat diet (HFD) feeding in SCID-beige mice. Exposure to HFDs did not impact the maturation of macroencapsulated pancreatic progenitor cells into glucose-responsive insulin-secreting cells following transplantation, and the cell therapy improved glucose tolerance in HFD-fed transplant recipients after 24 weeks. However, since diet-induced hyperglycemia and obesity were not fully ameliorated by transplantation alone, a second cohort of HFD-fed mice was treated with pancreatic progenitor cells combined with one of three antidiabetic drugs. All combination therapies rapidly improved body weight and co-treatment with either sitagliptin or metformin improved hyperglycemia after only 12 weeks. Therefore, a stem cell-based therapy may be effective for treating type 2 diabetes, particularly in combination with antidiabetic drugs.


Asunto(s)
Diferenciación Celular , Diabetes Mellitus Tipo 2/etiología , Dieta/efectos adversos , Células Madre Embrionarias Humanas/citología , Hipoglucemiantes/farmacología , Obesidad/etiología , Páncreas/citología , Trasplante de Células Madre , Células Madre/citología , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Glucosa/metabolismo , Humanos , Hiperglucemia , Resistencia a la Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , Hígado/anatomía & histología , Hígado/metabolismo , Ratones , Ratones SCID , Obesidad/metabolismo , Obesidad/terapia , Tamaño de los Órganos , Fenotipo
2.
J Neurosci ; 34(4): 1481-93, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24453336

RESUMEN

Cell cycle exit is an obligatory step for the differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating cells. A key regulator of the transition from proliferation to quiescence is the E2F/Rb pathway, whose activity is highly regulated in physiological conditions and deregulated in tumors. In this paper we report a lineage-specific decline of nuclear E2F1 during differentiation of rodent OPC into oligodendrocytes (OLs) in developing white matter tracts and in cultured cells. Using chromatin immunoprecipitation (ChIP) and deep-sequencing in mouse and rat OPCs, we identified cell cycle genes (i.e., Cdc2) and chromatin components (i.e., Hmgn1, Hmgn2), including those modulating DNA methylation (i.e., Uhrf1), as E2F1 targets. Binding of E2F1 to chromatin on the gene targets was validated and their expression assessed in developing white matter tracts and cultured OPCs. Increased expression of E2F1 gene targets was also detected in mouse gliomas (that were induced by retroviral transformation of OPCs) compared with normal brain. Together, these data identify E2F1 as a key transcription factor modulating the expression of chromatin components in OPC during the transition from proliferation to differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular , Cromatina/fisiología , Factor de Transcripción E2F1/metabolismo , Genes cdc/fisiología , Neurogénesis/fisiología , Oligodendroglía/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Inmunoprecipitación de Cromatina , Femenino , Inmunohistoquímica , Masculino , Ratones , Oligodendroglía/citología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/citología , Células Madre/metabolismo
3.
PLoS One ; 6(4): e18088, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21490970

RESUMEN

Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes requires extensive changes in gene expression, which are partly mediated by post-translational modifications of nucleosomal histones. An essential modification for oligodendrocyte differentiation is the removal of acetyl groups from lysine residues which is catalyzed by histone deacetylases (HDACs). The transcriptional targets of HDAC activity within OPCs however, have remained elusive and have been identified in this study by interrogating the oligodendrocyte transcriptome. Using a novel algorithm that allows clustering of gene transcripts according to expression kinetics and expression levels, we defined major waves of co-regulated genes. The initial overall decrease in gene expression was followed by the up-regulation of genes involved in lipid metabolism and myelination. Functional annotation of the down-regulated gene clusters identified transcripts involved in cell cycle regulation, transcription, and RNA processing. To define whether these genes were the targets of HDAC activity, we cultured rat OPCs in the presence of trichostatin A (TSA), an HDAC inhibitor previously shown to inhibit oligodendrocyte differentiation. By overlaying the defined oligodendrocyte transcriptome with the list of 'TSA sensitive' genes, we determined that a high percentage of 'TSA sensitive' genes are part of a normal program of oligodendrocyte differentiation. TSA treatment increased the expression of genes whose down-regulation occurs very early after induction of OPC differentiation, but did not affect the expression of genes with a slower kinetic. Among the increased 'TSA sensitive' genes we detected several transcription factors including Id2, Egr1, and Sox11, whose down-regulation is critical for OPC differentiation. Thus, HDAC target genes include clusters of co-regulated genes involved in transcriptional repression. These results support a de-repression model of oligodendrocyte lineage progression that relies on the concurrent down-regulation of several inhibitors of differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Redes Reguladoras de Genes/fisiología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Animales , Diferenciación Celular/genética , Células Cultivadas , Inmunoprecipitación de Cromatina , Redes Reguladoras de Genes/genética , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Glia ; 58(4): 377-90, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19795505

RESUMEN

Development of the central nervous system (CNS) requires the generation of neuronal and glial cell subtypes in appropriate numbers, and this demands the careful coordination of cell-cycle exit, survival, and differentiation. The E2F/Rb pathway is critical for cell-cycle regulation and also modulates survival and differentiation of distinct cell types in the developing and adult CNS. In this review, we first present the specific temporal patterns of expression of the E2F and Rb family members during CNS development and then discuss the genetic ablation of single or multiple members of these two families. Overall, the available data suggest a time-dependent and cell-context specific role of E2F and Rb family members in the developing and adult CNS.


Asunto(s)
Enfermedades del Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Factores de Transcripción E2F/metabolismo , Proteína de Retinoblastoma/metabolismo , Animales , Humanos , Transducción de Señal
5.
Nat Neurosci ; 11(9): 1024-34, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19160500

RESUMEN

The efficiency of remyelination decreases with age, but the molecular mechanisms responsible for this decline remain only partially understood. In this study, we show that remyelination is regulated by age-dependent epigenetic control of gene expression. In demyelinated young brains, new myelin synthesis is preceded by downregulation of oligodendrocyte differentiation inhibitors and neural stem cell markers, and this is associated with recruitment of histone deacetylases (HDACs) to promoter regions. In demyelinated old brains, HDAC recruitment is inefficient, and this allows the accumulation of transcriptional inhibitors and prevents the subsequent surge in myelin gene expression. Defective remyelination can be recapitulated in vivo in mice receiving systemic administration of pharmacological HDAC inhibitors during cuprizone treatment and is consistent with in vitro results showing defective differentiation of oligodendrocyte progenitors after silencing specific HDAC isoforms. Thus, we suggest that inefficient epigenetic modulation of the oligodendrocyte differentiation program contributes to the age-dependent decline in remyelination efficiency.


Asunto(s)
Envejecimiento/fisiología , Diferenciación Celular/fisiología , Enfermedades Desmielinizantes/fisiopatología , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Proteínas de la Mielina/metabolismo , Regeneración/fisiología , Animales , Animales Recién Nacidos , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/administración & dosificación , Epigénesis Genética/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Proteínas de la Mielina/genética , Sistemas Neurosecretores/efectos de los fármacos , Sistemas Neurosecretores/patología , Ratas , Regeneración/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/fisiología , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Ácido Valproico/farmacología
6.
Genes Dev ; 20(7): 784-94, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16600910

RESUMEN

The mechanisms by which homeoproteins bind selectively to target genes in vivo have long remained unresolved. Here we report that PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein by regulating its subnuclear localization and proximity to target genes. We demonstrate that the interaction of Msx1 with PIAS1, but not its sumoylation, is required for Msx1 to function as an inhibitor of myoblast differentiation through repression of myogenic regulatory genes, such as MyoD. We find that PIAS1 enables Msx1 to bind selectively to a key regulatory element in MyoD, the CER, in myoblast cells and to distinguish the CER from other nonregulatory TAAT-containing sequences. We show that PIAS1 is required for the appropriate localization and retention of Msx1 at the nuclear periphery in myoblast cells. Furthermore, we demonstrate that myogenic regulatory genes that are repressed by Msx1, namely MyoD and Myf5, are located at the nuclear periphery in myoblast cells. We propose that a key regulatory event for DNA-binding specificity by homeoproteins in vivo is their appropriate targeting to subnuclear compartments where their target genes are located, which can be achieved by cofactors such as PIAS1.


Asunto(s)
ADN/metabolismo , Factor de Transcripción MSX1/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Sitios de Unión/genética , Línea Celular , Núcleo Celular/metabolismo , ADN/genética , Humanos , Factor de Transcripción MSX1/genética , Ratones , Modelos Biológicos , Desarrollo de Músculos , Mioblastos/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...