Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 92(3): 035111, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33820033

RESUMEN

Measuring the faint polarization signal of the cosmic microwave background (CMB) not only requires high optical throughput and instrument sensitivity but also control over systematic effects. Polarimetric cameras or receivers used in this setting often employ dielectric vacuum windows, filters, or lenses to appropriately prepare light for detection by cooled sensor arrays. These elements in the optical chain are typically designed to minimize reflective losses and hence improve sensitivity while minimizing potential imaging artifacts such as glint and ghosting. The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument designed to measure the polarization of the CMB radiation at the largest angular scales and characterize astrophysical dust foregrounds. PIPER's twin telescopes and detector systems are submerged in an open-aperture liquid helium bucket dewar. A fused-silica window anti-reflection (AR) coated with polytetrafluoroethylene is installed on the vacuum cryostat that houses the cryogenic detector arrays. Light passes from the skyward portions of the telescope to the detector arrays through this window, which utilizes an indium seal to prevent superfluid helium leaks into the vacuum cryostat volume. The AR coating implemented reduces reflections from each interface to <1% compared to ∼10% from an uncoated window surface. The AR coating procedure and room temperature optical measurements of the window are presented. The indium vacuum sealing process is also described in detail, and test results characterizing its integrity to superfluid helium leaks are provided.

2.
Phys Rev Lett ; 107(2): 021301, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21797590

RESUMEN

We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.

3.
Phys Rev Lett ; 107(2): 021302, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21797591

RESUMEN

For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Ω(Λ) confirms other measurements from supernovae, galaxy clusters, and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...