Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 22(1): 103, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702750

RESUMEN

BACKGROUND: Ascetosporea (Endomyxa, Rhizaria) is a group of unicellular parasites infecting aquatic invertebrates. They are increasingly being recognized as widespread and important in marine environments, causing large annual losses in invertebrate aquaculture. Despite their importance, little molecular data of Ascetosporea exist, with only two genome assemblies published to date. Accordingly, the evolutionary origin of these parasites is unclear, including their phylogenetic position and the genomic adaptations that accompanied the transition from a free-living lifestyle to parasitism. Here, we sequenced and assembled three new ascetosporean genomes, as well as the genome of a closely related amphizoic species, to investigate the phylogeny, origin, and genomic adaptations to parasitism in Ascetosporea. RESULTS: Using a phylogenomic approach, we confirm the monophyly of Ascetosporea and show that Paramyxida group with Mikrocytida, with Haplosporida being sister to both groups. We report that the genomes of these parasites are relatively small (12-36 Mb) and gene-sparse (~ 2300-5200 genes), while containing surprisingly high amounts of non-coding sequence (~ 70-90% of the genomes). Performing gene-tree aware ancestral reconstruction of gene families, we demonstrate extensive gene losses at the origin of parasitism in Ascetosporea, primarily of metabolic functions, and little gene gain except on terminal branches. Finally, we highlight some functional gene classes that have undergone expansions during evolution of the group. CONCLUSIONS: We present important new genomic information from a lineage of enigmatic but important parasites of invertebrates and illuminate some of the genomic innovations accompanying the evolutionary transition to parasitism in this lineage. Our results and data provide a genetic basis for the development of control measures against these parasites.


Asunto(s)
Genómica , Filogenia , Rhizaria , Animales , Rhizaria/genética , Evolución Biológica , Genoma , Evolución Molecular
2.
Dis Aquat Organ ; 157: 61-72, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421008

RESUMEN

Sustainable management of crustacean populations requires an understanding of the range of factors affecting different crustacean species. Recently, a high prevalence of a paramyxid parasite, Paramarteilia canceri, was reported in velvet crabs Necora puber in Ireland. Similar parasites have been known to cause mass mortalities in bivalves and, as velvet crabs are an important commercial species, these parasite infections are cause for concern. The main objective of this study was to examine variation in P. canceri infections in relation to host biology and season over a 2 yr period. In addition, we tested a range of host tissues and organs to gain more information on the host-parasite interaction. The parasite was present in all tissues and organs investigated, including the gonad and eggs of a berried female. Parasite prevalence was highest in the cuticular epithelium and hepatopancreas. Both annual and seasonal variation was found in parasite prevalence and parasite load. No difference was found in parasite prevalence or parasite load with either crab size or crab sex. Granulomas as a response to infection were significantly more abundant in infected velvet crab individuals. The results of this study provide important information on the host-parasite interaction between P. canceri and the velvet crab and highlight the importance of including parasite monitoring in the management of crustacean fisheries.


Asunto(s)
Braquiuros , Humanos , Animales , Femenino , Braquiuros/parasitología , Explotaciones Pesqueras , Interacciones Huésped-Parásitos
3.
Dis Aquat Organ ; 148: 167-181, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35445664

RESUMEN

The velvet swimming crab Necora puber has been fished in Ireland since the early 1980s and contributes significant income to smaller fishing vessels. From 2016 onwards, reduced landings have been reported. We undertook a full pathological investigation of crabs from fishing grounds at 3 sites on the west (Galway), southwest (Castletownbere) and east (Howth) coasts of Ireland. Histopathology, transmission electron microscopy and molecular taxonomic and phylogenetic analyses showed high prevalence and infection level of Paramarteilia canceri, previously only reported from the edible crab Cancer pagurus. This study provides the first molecular data for P. canceri, and shows its phylogenetic position in the order Paramyxida (Rhizaria). Other parasites and symbionts detected in the crabs were also noted, including widespread but low co-infection with Hematodinium sp. and a microsporidian consistent with the Ameson and Nadelspora genera. This is the first histological record of Hematodinium sp. in velvet crabs from Ireland. Four N. puber individuals across 2 sites were co-infected by P. canceri and Hematodinium sp. At one site, 3 velvet crabs infected with P. canceri were co-infected with the first microsporidian recorded from this host; the microsporidian 18S sequence was almost identical to Ameson pulvis, known to infect European shore crabs Carcinus maenas. The study provides a comprehensive phylogenetic analysis of this and all other available Ameson and Nadelspora 18S sequences. Together, these findings provide a baseline for further investigations of N. puber populations along the coast of Ireland.


Asunto(s)
Braquiuros , Dinoflagelados , Animales , Irlanda/epidemiología , Filogenia , Prevalencia , Natación
4.
Dis Aquat Organ ; 142: 203-211, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33331288

RESUMEN

Salmon pancreas disease virus, more commonly known as salmonid alphavirus (SAV), is a single-stranded positive sense RNA virus and the causative agent of pancreas disease and sleeping disease in salmonids. In this study, a unique strain of SAV previously isolated from ballan wrasse was subjected to whole genome sequencing using nanopore sequencing. In order to accurately examine the evolutionary history of this strain in comparison to other SAV strains, a partitioned phylogenetic analysis was performed to account for variation in the rate of evolution for both individual genes and codon positions. Partitioning the genome alignments almost doubled the observed branch lengths in the phylogenetic tree when compared to the more common approach of applying one model of substitution across the genome and significantly increased the statistical fit of the best-fitting models of nucleotide substitution. Based on the genomic data, a valid case can be made for the viral strain examined in this study to be considered a new SAV genotype. In addition, this study adds to a growing number of studies in which SAV has been found to infect non-salmonid fish, and as such we have suggested that the viral species name be amended to the more inclusive 'piscine alphavirus'.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Enfermedades de los Peces , Nanoporos , Salmo salar , Salmonidae , Alphavirus/genética , Infecciones por Alphavirus/veterinaria , Animales , Genotipo , Filogenia , Secuenciación Completa del Genoma/veterinaria
5.
J Fish Dis ; 42(8): 1161-1168, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31169311

RESUMEN

Piscine myocarditis virus (PMCV) is a double-stranded RNA virus which has been linked to cardiomyopathy syndrome (CMS) in Atlantic salmon (Salmo salar L.). The first recorded outbreak of CMS in Ireland occurred in 2012. Heart tissue samples were collected in the current study from farmed Atlantic salmon from various marine sites around Ireland, and the open reading frames (ORFs) 1 and 3 were amplified and sequenced in order to examine the genetic diversity of PMCV. Results showed PMCV to be largely homogenous in Irish samples, showing little genetic diversity. However, several amino acid positions within both ORF1 and ORF3 showed consistent variations unique to the Irish PMCV strains when compared with previously published Norwegian strains. The phylogeny generated in the present study suggests that PMCV may have been introduced into Ireland in two waves, both coming from the southern part of PMCV's range in Norway. In addition, over three-quarters of the PMCV strains which were sequenced came from fish not exhibiting any clinical signs of CMS, suggesting that either PMCV is evolving to become less virulent in Ireland or Irish Atlantic salmon are developing immunity to the disease.


Asunto(s)
Enfermedades de los Peces/virología , Variación Genética , Infecciones por Virus ARN/veterinaria , Salmo salar , Totiviridae/genética , Animales , Irlanda , Filogenia
6.
J Fish Dis ; 41(11): 1643-1651, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30051469

RESUMEN

The use of cleaner fish as a biological control for sea lice in Atlantic salmon aquaculture has increased in recent years. Wild-caught wrasse are commonly used as cleaner fish in Europe. In Ireland, samples of wrasse from each fishing area are screened for potential pathogens prior to their deployment into sea cages. Salmonid alphavirus was isolated from a pooled sample of ballan wrasse, showing no signs of disease, caught from the NW of Ireland. Partial sequencing of the E2 and nsP3 genes showed that it was closely related to the previously reported SAV subtype 6. This represents only the second isolation of this subtype and the first from a wild fish species, namely ballan wrasse.


Asunto(s)
Infecciones por Alphavirus/veterinaria , Alphavirus/aislamiento & purificación , Enfermedades de los Peces/virología , Perciformes , Alphavirus/clasificación , Alphavirus/genética , Infecciones por Alphavirus/virología , Secuencia de Aminoácidos , Animales , Irlanda , Filogenia , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...