Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38452208

RESUMEN

Gene therapy using adeno-associated viral (AAV) vectors is a promising approach for the treatment of monogenic disorders. Long-term multi-year transgene expression has been demonstrated in animal models and clinical studies. Nevertheless, uncertainties remain concerning the nature of AAV vector persistence and whether there is a potential for genotoxicity. Here, we describe the mechanisms of AAV vector persistence in the liver of a severe hemophilia A dog model (male = 4, hemizygous, and female = 4, homozygous), more than a decade after portal vein delivery. The predominant vector form was non-integrated episomal structures with levels correlating with long-term transgene expression. Random integration was seen in all samples (median frequency= 9.3e-4 sites/cell), with small numbers of non-random common integration sites associated with open chromatin. No full-length integrated vectors were found, supporting predominant episomal vector-mediated long-term transgene expression. Despite integration, this was not associated with oncogene upregulation or histopathological evidence of tumorigenesis. These findings support the long-term safety of this therapeutic modality.

2.
J Thromb Haemost ; 21(8): 2007-2019, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37085036

RESUMEN

Quantitative abnormalities in factor VIII (FVIII) and its binding partner, von Willebrand factor (VWF), are associated with an increased risk of bleeding or thrombosis, and pathways that regulate the clearance of VWF-FVIII can strongly influence their plasma levels. In 2010, the Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) on genome-wide association study meta-analysis identified variants in the genes for the sinusoidal endothelial receptors C-type lectin domain family 4 member M (CLEC4M), stabilin-2, and scavenger receptor class A member 5 (SCARA5) as being associated with plasma levels of VWF and/or FVIII in normal individuals. The ability of these receptors to bind, internalize, and clear the VWF-FVIII complex from the circulation has now been reported in a series of studies using in vitro and in vivo models. The receptor stabilin-2 has also been shown to modulate the immune response to infused VWF-FVIII concentrates in a murine model. In addition, the influence of genetic variants in CLEC4M, STAB2, and SCARA5 on type 1 von Willebrand disease/low VWF phenotype, FVIII pharmacokinetics, and the risk of venous thromboembolism has been described in a number of patient-based studies. Understanding the role of these receptors in the regulation of VWF-FVIII clearance has led to significant insights into the genomic architecture that modulates plasma VWF and FVIII levels, improving the understanding of pathways that regulate VWF-FVIII clearance and the mechanistic basis of quantitative VWF-FVIII pathologies.


Asunto(s)
Hemostáticos , Trombosis , Enfermedades de von Willebrand , Animales , Ratones , Factor de von Willebrand/metabolismo , Estudio de Asociación del Genoma Completo , Factor VIII/genética , Hemostasis/genética , Trombosis/genética , Trombosis/metabolismo , Células Endoteliales/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Enfermedades de von Willebrand/metabolismo , Receptores Depuradores de Clase A/genética
3.
Pharmgenomics Pers Med ; 16: 239-252, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998673

RESUMEN

The inherited bleeding disorder hemophilia A involves the quantitative deficiency of the coagulation cofactor factor VIII (FVIII). Prophylactic treatment of severe hemophilia A patients with FVIII concentrates aims to reduce the frequency of spontaneous joint bleeding and requires personalized tailoring of dosing regimens to account for the substantial inter-individual variability of FVIII pharmacokinetics. The strong reproducibility of FVIII pharmacokinetic (PK) metrics between repeat analyses in the same individual suggests this trait is genetically regulated. While the influence of plasma von Willebrand factor antigen (VWF:Ag) levels, ABO blood group, and patient age on FVIII PK is well established, estimates suggest these factors account for less than 35% of the overall variability in FVIII PK. More recent studies have identified genetic determinants that modify FVIII clearance or half-life including VWF gene variants that impair VWF-FVIII binding resulting in the accelerated clearance of VWF-free FVIII. Additionally, variants in receptors that regulate the clearance of FVIII or the VWF-FVIII complex have been associated with FVIII PK. The characterization of genetic modifiers of FVIII PK will provide mechanistic insight into a subject of clinical significance and support the development of personalized treatment plans for patients with hemophilia A.

4.
J Thromb Haemost ; 21(3): 586-598, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36696220

RESUMEN

BACKGROUND: Although the concept of immunothrombosis has established a link between inflammation and thrombosis, the role of inflammation in the pathogenesis of deep vein thrombosis remains to be fully elucidated. Further, although various constituents of venous thrombi have been identified, their localizations and cellular and molecular interactions are yet to be combined in a single, multiplexed analysis. OBJECTIVES: The objective of this study was to investigate the role of the von Willebrand factor (VWF) in inflammation-associated venous thrombosis. We also performed a proof-of-concept study of imaging mass cytometry to quantitatively and simultaneously analyze the localizations and interactions of 10 venous thrombus constituents. METHODS: We combined the murine inferior vena cava stenosis model of deep vein thrombosis with the lipopolysaccharide model of endotoxemia. We also performed a proof-of-concept study of imaging mass cytometry to assess the feasibility of this approach in analyzing the structural composition of thrombi. RESULTS: We found that lipopolysaccharide-treated mice had significantly higher incidences of venous thrombosis, an effect that was mitigated when VWF was inhibited using inhibitory αVWF antibodies. Our detailed structural analysis also showed that most thrombus components are localized in the white thrombus regardless of endotoxemia. Moreover, although endotoxemia modulated the relative representation and interactions of VWF with other thrombus constituents, the scaffolding network, comprised VWF, fibrin, and neutrophil extracellular traps, remained largely unaffected. CONCLUSIONS: We observe a key role for VWF in the pathogenesis of inflammation-associated venous thrombosis while providing a more comprehensive insight into the molecular interactions that constitute the architecture of venous thrombi.


Asunto(s)
Endotoxemia , Trombosis , Trombosis de la Vena , Ratones , Animales , Factor de von Willebrand , Lipopolisacáridos , Trombosis de la Vena/etiología , Trombosis/complicaciones
5.
Blood Adv ; 6(9): 2908-2919, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35020809

RESUMEN

von Willebrand factor (VWF) is an extremely cysteine-rich multimeric protein that is essential for maintaining normal hemostasis. The cysteine residues of VWF monomers form intra- and intermolecular disulfide bonds that regulate its structural conformation, multimer distribution, and ultimately its hemostatic activity. In this study, we investigated and characterized the molecular and pathogenic mechanisms through which a novel cysteine variant p.(Cys1084Tyr) causes an unusual, mixed phenotype form of von Willebrand disease (VWD). Phenotypic data including bleeding scores, laboratory values, VWF multimer distribution, and desmopressin response kinetics were investigated in 5 members (2 parents and 3 daughters) of a consanguineous family. VWF synthesis and secretion were also assessed in a heterologous expression system and in a transient transgenic mouse model. Heterozygosity for p.(Cys1084Tyr) was associated with variable expressivity of qualitative VWF defects. Heterozygous individuals had reduced VWF:GPIbM (<0.40 IU/mL) and VWF:CB (<0.35 IU/mL), as well as relative reductions in high-molecular-weight multimers, consistent with type 2A VWD. In addition to these qualitative defects, homozygous individuals also displayed reduced factor VIII (FVIII):C/VWF:Ag, leading to very low FVIII levels (0.03-0.1 IU/mL) and reduced VWF:Ag (<0.40 IU/mL) and VWF:GPIbM (<0.30 IU/mL). Accelerated VWF clearance and impaired VWF secretion contributed to the fully expressed homozygous phenotype with impaired secretion arising because of disordered disulfide connectivity.


Asunto(s)
Enfermedad de von Willebrand Tipo 2 , Enfermedades de von Willebrand , Animales , Cisteína/genética , Disulfuros , Ratones , Enfermedad de von Willebrand Tipo 2/genética , Enfermedades de von Willebrand/genética , Factor de von Willebrand/metabolismo
6.
J Thromb Haemost ; 19(10): 2440-2453, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34152080

RESUMEN

BACKGROUND: Stabilin-2 is an endocytic scavenger receptor that mediates the clearance of glycosaminoglycans, phosphatidylserine-expressing cells, and the von Willebrand factor-factor VIII (FVIII) complex. In a genome-wide screening study, pathogenic loss-of-function variants in the human STAB2 gene associated with an increased incidence of unprovoked venous thromboembolism (VTE). However, the specific mechanism(s) by which stabilin-2 deficiency influences the pathogenesis of VTE is unknown. OBJECTIVES: The aim of this study was to assess the influence of stabilin-2 on deep vein thrombosis (DVT) and to characterize the underlying prothrombotic phenotype of stabilin-2 deficiency in a mouse model. METHODS: DVT was induced using the inferior vena cava (IVC) stenosis model in two independent cohorts (littermates and non-littermates) of wild-type (Stab2+/+ ) and stabilin-2 (Stab2-/- )-deficient mice. Thrombus structure and contents were quantified by immunohistochemistry. Plasma procoagulant activity was assessed and complete blood counts were performed. RESULTS: Incidence of thrombus formation was not altered between Stab2+/+ and Stab2-/- mice. When thrombi were formed, Stab2-/- mice developed significantly larger thrombi than Stab2+/+ controls. Thrombi from Stab2-/- mice contained significantly more leukocytes and citrullinated histone H3 than Stab2+/+ thrombi. Stab2-/- mice had increased FVIII activity. Circulating levels of monocytes and granulocytes were significantly elevated in Stab2-/- mice, and Stab2-/- mice had elevated plasma cell-free DNA 24 hours post-IVC stenosis compared to their Stab2+/+ counterparts. CONCLUSIONS: These data suggest that stabilin-2 deficiency associates with a prothrombotic phenotype involving elevated levels of neutrophil extracellular trap-releasing leukocytes coupled with endogenous procoagulant activity, resulting in larger and qualitatively distinct venous thrombi.


Asunto(s)
Trampas Extracelulares , Trombosis , Animales , Moléculas de Adhesión Celular Neuronal , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Venas , Factor de von Willebrand
7.
J Thromb Haemost ; 19(3): 654-663, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33219619

RESUMEN

BACKGROUND: Factor VIII (FVIII) pharmacokinetics (PK) in adult hemophilia A populations are highly variable and have been previously determined to be influenced by von Willebrand factor:antigen (VWF:Ag), ABO blood group, and age. However, additional genetic determinants of FVIII PK are largely unknown. OBJECTIVES: The contribution of VWF clearance, VWF-FVIII-binding activity, and genetic variants in VWF clearance receptors to FVIII PK in adult patients were assessed. METHODS: FVIII PK assessment was performed in 44 adult subjects (age 18-61 years) with moderate or severe hemophilia A. VWF:Ag, VWF propeptide (VWFpp), VWFpp/VWF:Ag, and VWF:FVIII binding activity were measured. The VWF modifying loci CLEC4M, SCARA5, STAB2, and ABO, and the D'D3 FVIII-binding region of the VWF gene were genotyped. RESULTS: VWF:Ag, VWFpp, and VWF:FVIIIB positively correlated with FVIII half-life and negatively correlated with FVIII clearance. VWFpp/VWF:Ag negatively correlated with FVIII half-life and positively correlated with FVIII clearance. The correlation between VWFpp/VWF:Ag and FVIII half-life was stronger for type non-O patients than for type O patients, suggesting that slower VWF clearance increases FVIII half-life. Patients heterozygous for the CLEC4M rs868875 variant had increased FVIII clearance when compared with individuals homozygous for the reference allele. The CLEC4M variable number of tandem repeat (VNTR) alleles were also associated with the rate of FVIII clearance. When compared with the quartile of patients with the fastest FVIII clearance, the quartile of patients with the slowest FVIII clearance had a decreased frequency of the CLEC4M 5-VNTR. CONCLUSIONS: VWF-FVIII binding activity and genetic determinants of VWF clearance are important contributors to FVIII pharmacokinetics in adult patients.


Asunto(s)
Hemofilia A , Enfermedades de von Willebrand , Adolescente , Adulto , Factor VIII/genética , Semivida , Hemofilia A/diagnóstico , Hemofilia A/tratamiento farmacológico , Hemofilia A/genética , Humanos , Persona de Mediana Edad , Receptores Depuradores de Clase A , Adulto Joven , Factor de von Willebrand/genética
8.
Arterioscler Thromb Vasc Biol ; 40(12): 2860-2874, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32967458

RESUMEN

OBJECTIVE: Obesity is characterized by chronic low-grade inflammation and consequentially a hypercoagulable state, associating with an increased incidence of venous thromboembolism. Increased VWF (von Willebrand factor) plasma concentration and procoagulant function are independent risk factors for venous thromboembolism and are elevated in obese patients. Here, we explore the pathobiological role of VWF in obesity-associated venous thrombosis using murine models. Approach and Results: We first showed that diet-induced obese mice have increased VWF plasma levels and FVIII (factor VIII) activity compared with littermate controls. Elevated VWF levels appeared to be because of both increased synthesis and impaired clearance. Diet-induced obesity-associated venous thrombosis was assessed using the inferior vena cava-stenosis model of deep vein thrombosis. Diet-induced obese mice developed larger venous thrombi that were rich in VWF, erythrocytes, and leukocytes. Administering a polyclonal anti-VWF antibody or an anti-VWF A1 domain nanobody was protective against obesity-mediated thrombogenicity. Delayed administration (3 hours post-inferior vena cava stenosis) similarly reduced thrombus weight in diet-induced obese mice. CONCLUSIONS: This study demonstrates the critical role of VWF in the complex, thrombo-inflammatory state of obesity. It adds to the growing rationale for targeting VWF-specific interactions in thrombotic disease.


Asunto(s)
Dieta Alta en Grasa , Obesidad/complicaciones , Vena Cava Inferior/metabolismo , Trombosis de la Vena/etiología , Factor de von Willebrand/metabolismo , Proteína ADAMTS13/genética , Proteína ADAMTS13/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Fibrinolíticos/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Transducción de Señal , Anticuerpos de Dominio Único/farmacología , Vena Cava Inferior/efectos de los fármacos , Vena Cava Inferior/patología , Trombosis de la Vena/metabolismo , Trombosis de la Vena/patología , Trombosis de la Vena/prevención & control , Factor de von Willebrand/antagonistas & inhibidores , Factor de von Willebrand/genética
9.
Blood ; 134(11): 880-891, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31350267

RESUMEN

Factor VIII (FVIII) pharmacokinetic (PK) properties show high interpatient variability in hemophilia A patients. Although previous studies have determined that age, body mass index, von Willebrand factor antigen (VWF:Ag) levels, and ABO blood group status can influence FVIII PK, they do not account for all observed variability. In this study, we aim to describe the genetic determinants that modify the FVIII PK profile in a population of 43 pediatric hemophilia A patients. We observed that VWF:Ag and VWF propeptide (VWFpp)/VWF:Ag, but not VWFpp, were associated with FVIII half-life. VWFpp/VWF:Ag negatively correlated with FVIII half-life in patients with non-O blood type, but no correlation was observed for type O patients, suggesting that von Willebrand factor (VWF) half-life, as modified by the ABO blood group, is a strong regulator of FVIII PK. The FVIII-binding activity of VWF positively correlated with FVIII half-life, and the rare or low-frequency nonsynonymous VWF variants p.(Arg826Lys) and p.(Arg852Glu) were identified in patients with reduced VWF:FVIIIB but not VWF:Ag. Common variants at the VWF, CLEC4M, and STAB2 loci, which have been previously associated with plasma levels of VWF and FVIII, were associated with the FVIII PK profile. Together, these studies characterize the mechanistic basis by which VWF clearance and ABO glycosylation modify FVIII PK in a pediatric population. Moreover, this study is the first to identify non-VWF and non-ABO variants that modify FVIII PK in pediatric hemophilia A patients.


Asunto(s)
Coagulación Sanguínea/genética , Factor VIII/farmacocinética , Hemofilia A/genética , Hemofilia A/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Adolescente , Pruebas de Coagulación Sanguínea , Niño , Factor VIII/uso terapéutico , Femenino , Variación Genética , Genotipo , Semivida , Hemofilia A/sangre , Hemofilia A/tratamiento farmacológico , Humanos , Masculino , Tasa de Depuración Metabólica/genética , Unión Proteica , Proteolisis
10.
J Thromb Haemost ; 17(8): 1384-1396, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31126000

RESUMEN

BACKGROUND: Scavenger receptors play a significant role in clearing aged proteins from the plasma, including the large glycoprotein coagulation factors von Willebrand factor (VWF) and factor VIII (FVIII). A large genome-wide association study meta-analysis has identified genetic variants in the gene SCARA5, which encodes the class A scavenger receptor SCARA5, as being associated with plasma levels of VWF and FVIII. OBJECTIVES: The ability of SCARA5 to regulate the clearance of VWF-FVIII was characterized. METHODS: VWF-FVIII interactions with SCARA5 were evaluated by solid phase binding assays and in vitro cell based assays. The influence of SCARA5 deficiency on VWF:Ag and half-life was assessed in a murine model. The expression pattern of SCARA5 and its colocalization with VWF was evaluated in human tissues. RESULTS: VWF and the VWF-FVIII complex bound to human recombinant SCARA5 in a dose- and calcium-dependent manner. SCARA5 expressing HEK 293T cells bound and internalized VWF and the VWF-FVIII complex into early endosomes. In vivo, SCARA5 deficiency had a modest influence on the half-life of human VWF. mRNA analysis and immunohistochemistry determined that human SCARA5 is expressed in kidney podocytes and the red pulp, white pulp, and marginal zone of the spleen. VWF was found to colocalize with SCARA5 expressed by littoral cells lining the red pulp of the human spleen. CONCLUSIONS: SCARA5 is an adhesive and endocytic receptor for VWF. In human tissues, SCARA5 is expressed by kidney podocytes and splenic littoral endothelial cells. SCARA5 may have a modest influence on VWF clearance in humans.


Asunto(s)
Endocitosis , Receptores Depuradores de Clase A/metabolismo , Bazo/metabolismo , Factor de von Willebrand/metabolismo , Animales , Factor VIII/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Podocitos/metabolismo , Unión Proteica , Receptores Depuradores de Clase A/genética , Bazo/citología
11.
Res Pract Thromb Haemost ; 3(2): 254-260, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31011709

RESUMEN

BACKGROUND: The multimeric glycoprotein von Willebrand factor (VWF) mediates platelet adhesion and aggregation at the site of vessel injury. The adhesive activity of VWF is influenced by its multimer length which is regulated by the metalloprotease ADAMTS13. The ability of ADAMTS13 to regulate platelet thrombus growth in a shear-dependent manner has been described, however, the mechanistic basis of this action has not been well characterized. METHODS: We developed an mCherry-tagged murine ADAMTS13 protein and utilized an ex vivo flow chamber system to visualize the localization of ADAMTS13 within the platelet thrombus under different conditions of shear. Using this system, we also assessed the influence of platelet-mediated tensile force on ADAMTS13 localization within the thrombus using gain-of-function GPIb binding and loss-of-function GPIIbIIIa binding mutants in VWF/ADAMTS13 DKO mice. RESULTS: ADAMTS13 was visualized on the growing platelet thrombus under very high shear using ADAMTS13-mcherry. ADAMTS13-mCherry localized particularly at the top portion of the thrombus and reduced thrombus size as it grew to occlusion. At the pathological high shear of 7500 s-1, platelet-mediated tensile force, involving GPIb but not GPIIbIIIa receptors, influenced localization of ADAMTS13 to the thrombus under conditions of shear. CONCLUSIONS: Tensile force applied on VWF produced by shear stress and platelet GPIb binding has a crucial role in ADAMTS13 activity at the site of thrombus formation. These results suggest that ADAMTS13 activity at the site of platelet thrombus formation is regulated by a shear stress and platelet-dependent feedback mechanism to prevent vessel occlusion and pathological thrombosis.

12.
J Thromb Haemost ; 17(4): 681-694, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30740857

RESUMEN

Essentials CLEC4M is an endocytic receptor for factor FVIII. CLEC4M interacts with FVIII in a VWF-dependent and independent manner. CLEC4M binds to mannose-containing glycans on FVIII. CLEC4M internalization of FVIII involves clathrin coated pits. SUMMARY: Background von Willebrand factor (VWF) and factor VIII (FVIII) circulate in the plasma as a non-covalent complex, and the majority of FVIII is likely to be cleared by VWF-dependent pathways. Clearance of VWF-free FVIII is rapid and underlies the pathological basis of some quantitative FVIII deficiencies. The receptor pathways that regulate the clearance of VWF-bound and VWF-free FVIII are incompletely uncharacterized. The human liver-expressed endothelial lectin CLEC4M has been previously characterized as a clearance receptor for VWF, although its influence on FVIII is unknown. Objective The interaction between FVIII and CLEC4M was characterized in the presence or absence of VWF. Methods FVIII interactions with CLEC4M were evaluated by in vitro cell-based and solid phase binding assays. Interactions between FVIII and CLEC4M or liver sinusoidal endothelial cells were evaluated in vivo by immunohistochemistry. Results CLEC4M-expressing HEK 293 cells bound and internalized recombinant and plasma-derived FVIII through VWF-dependent and independent mechanisms. CLEC4M binding to recombinant FVIII was dependent on mannose-exposed N-linked glycans. CLEC4M mediated FVIII internalization via a clathrin-coated pit-dependent mechanism, resulting in transport of FVIII from early and late endosomes for catabolism by lysosomes. In vivo hepatic expression of CLEC4M after hydrodynamic liver transfer was associated with a decrease in plasma levels of endogenous murine FVIII:C in normal mice, whereas infused recombinant human FVIII was associated with sinusoidal endothelial cells in the presence or absence of VWF. Conclusions These findings suggest that CLEC4M is a novel clearance receptor that interacts with mannose-exposed glycans on FVIII in the presence or absence of VWF.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Endocitosis , Células Endoteliales/metabolismo , Factor VIII/metabolismo , Lectinas Tipo C/metabolismo , Hígado/irrigación sanguínea , Receptores de Superficie Celular/metabolismo , Factor de von Willebrand/metabolismo , Animales , Sitios de Unión , Moléculas de Adhesión Celular/genética , Clatrina/metabolismo , Endosomas/metabolismo , Factor VIII/genética , Células HEK293 , Humanos , Lectinas Tipo C/genética , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Transporte de Proteínas , Proteolisis , Receptores de Superficie Celular/genética , Factor de von Willebrand/genética
13.
J Clin Invest ; 128(9): 4057-4073, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30124466

RESUMEN

Quantitative abnormalities of the von Willebrand factor-factor VIII (VWF-FVIII) complex associate with inherited bleeding or thrombotic disorders. Receptor-mediated interactions between plasma VWF-FVIII and phagocytic or immune cells can influence their hemostatic and immunogenic activities. Genetic association studies have demonstrated that variants in the STAB2 gene, which encodes the scavenger receptor stabilin-2, associate with plasma levels of VWF-FVIII. However, the mechanistic basis and pathophysiological consequences of this association are unknown. We have demonstrated that stabilin-2-expressing cells bind and internalize human VWF and FVIII in a VWF-dependent manner, and stabilin-2-deficient mice displayed prolonged human VWF-FVIII half-life compared with controls. The stabilin-2 variant p.E2377K significantly decreased stabilin-2 expression and impaired VWF endocytosis in a heterologous expression system, and common STAB2 variants associated with plasma VWF levels in type 1 von Willebrand disease patients. STAB2-deficient mice displayed a decreased immunogenic response to human VWF-FVIII complex, while coinfusion of human VWF-FVIII with the stabilin-2 ligand hyaluronic acid attenuated the immune response to exogenous FVIII. Collectively, these data suggest that stabilin-2 functions as both a clearance and an immunoregulatory receptor for VWF-FVIII, making stabilin-2 a novel molecular target for modification of the half-life of VWF-FVIII and the immune response to VWF-FVIII concentrates.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Factor VIII/metabolismo , Factor de von Willebrand/metabolismo , Adolescente , Adulto , Anciano , Animales , Moléculas de Adhesión Celular Neuronal/deficiencia , Niño , Preescolar , Combinación de Medicamentos , Endocitosis , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Factor VIII/química , Factor VIII/inmunología , Factor VIII/farmacocinética , Femenino , Variación Genética , Semivida , Humanos , Lactante , Hígado/citología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Unión Proteica , Estabilidad Proteica , Adulto Joven , Factor de von Willebrand/química , Factor de von Willebrand/inmunología , Factor de von Willebrand/farmacocinética
14.
Blood Adv ; 2(13): 1585-1594, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29980574

RESUMEN

Plasma levels of von Willebrand factor (VWF) vary considerably in the general population and this variation has been linked to several genetic and environmental factors. Genetic factors include 2 common single nucleotide variants (SNVs) located in VWF, rs1063856 (c.2365A>G) and rs1063857 (c.2385T>C), although to date the mechanistic basis for their association with VWF level is unknown. Using genotypic/phenotypic information from a European healthy control population, in vitro analyses of recombinant VWF expressing both SNVs, and in vivo murine models, this study determined the precise nature of their association with VWF level and investigated the mechanism(s) involved. Possession of either SNV corresponded with a significant increase in plasma VWF in healthy controls (P < .0001). In vitro expression confirmed this observation and highlighted an independent effect for each SNV (P < .0001 and P < .01, respectively), despite close proximity and strong linkage disequilibrium between them both. The influence of c.2365A>G on VWF levels was also confirmed in vivo. This increase in VWF protein corresponded to an increase in VWF messenger RNA (mRNA) resulting, in part, from prolonged mRNA half-life. In addition, coinheritance of both SNVs was associated with a lower VWF propeptide-to-VWF antigen ratio in healthy controls (P < .05) and a longer VWF half-life in VWF knockout mice (P < .0001). Both SNVs therefore directly increase VWF plasma levels through a combined influence on VWF biosynthesis and clearance, and may have an impact on disease phenotype in both hemostatic and thrombotic disorders.


Asunto(s)
Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , ARN Mensajero , Factor de von Willebrand , Animales , Femenino , Humanos , Masculino , Ratones , Estabilidad del ARN , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Factor de von Willebrand/biosíntesis , Factor de von Willebrand/genética
15.
Haematologica ; 103(11): 1925-1936, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30002126

RESUMEN

Immune responses to factor VIII remain the greatest complication in the treatment of severe hemophilia A. Recent epidemiological evidence has highlighted that recombinant factor VIII produced in baby hamster kidney cells is more immunogenic than factor VIII produced in Chinese hamster ovary cells. Glycosylation differences have been hypothesized to influence the immunogenicity of these synthetic concentrates. In two hemophilia A mouse models, baby hamster kidney cell-derived factor VIII elicited a stronger immune response compared to Chinese hamster ovary cell-derived factor VIII. Furthermore, factor VIII produced in baby hamster kidney cells exhibited accelerated clearance from circulation independent of von Willebrand factor. Lectin and mass spectrometry analysis of total N-linked glycans revealed differences in high-mannose glycans, sialylation, and the occupancy of glycan sites. Factor VIII desialylation did not influence binding to murine splenocytes or dendritic cells, nor surface co-stimulatory molecule expression. We did, however, observe increased levels of immunoglobulin M specific to baby hamster kidney-derived factor VIII in naïve hemophilia A mice. De-N-glycosylation enhanced immunoglobulin M binding, suggesting that N-glycan occupancy masks epitopes. Elevated levels of immunoglobulin M and immunoglobulin G specific to baby hamster kidney-derived factor VIII were also observed in healthy individuals, and de-N-glycosylation increased immunoglobulin G binding. Collectively, our data suggest that factor VIII produced in baby hamster kidney cells is more immunogenic than that produced in Chinese hamster ovary cells, and that incomplete occupancy of N-linked glycosylation sites leads to the formation of immunoglobulin M- and immunoglobulin G-factor VIII immune complexes that contribute to the enhanced clearance and immunogenicity in these mouse models of hemophilia A.


Asunto(s)
Factor VIII , Hemofilia A , Animales , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Factor VIII/inmunología , Factor VIII/farmacología , Femenino , Glicosilación , Hemofilia A/tratamiento farmacológico , Hemofilia A/genética , Hemofilia A/inmunología , Hemofilia A/patología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Masculino , Ratones , Ratones Noqueados , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología
16.
J Vis Exp ; (126)2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28829426

RESUMEN

Von Willebrand factor (VWF) is a multimeric glycoprotein coagulation factor that mediates platelet adhesion and aggregation at sites of endothelial damage and that carries factor VIII in the circulation. VWF is synthesized by endothelial cells and is either released constitutively into the plasma or is stored in specialized organelles, called Weibel-Palade bodies (WPBs), for on-demand release in response to hemostatic challenge. Procoagulant and proinflammatory stimuli can rapidly induce WPB exocytosis and VWF release. The majority of VWF released by endothelial cells circulates in the plasma; however, a proportion of VWF is anchored to the endothelial cell surface. Under conditions of physiological shear, endothelial-anchored VWF can bind to platelets, forming a VWF-platelet string that may represent the nidus of thrombus formation. A flow chamber system can be used to visually observe the release of VWF from endothelial cells and the subsequent platelet capture in a manner that is reproducible and relevant to the pathophysiology of VWF-mediated thrombus formation. Using this methodology, endothelial cells are cultured in a flow chamber and are subsequently stimulated with secretagogues to induce WPB exocytosis. Washed platelets are then perfused over the activated endothelium. The platelets are activated and subsequently bind to elongated VWF strings in the direction of fluid flow. Using extracellular histones as a procoagulant and proinflammatory stimulus, we observed increased VWF-platelet string formation on histone-treated endothelial cells compared to untreated endothelial cells. This protocol describes a quantitative, visual, and real-time assessment of the activation of VWF-platelet interactions in models of thrombosis and hemostasis.


Asunto(s)
Plaquetas/citología , Plaquetas/metabolismo , Células Endoteliales/metabolismo , Histonas/sangre , Factor de von Willebrand/metabolismo , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Células Endoteliales/citología , Endotelio Vascular/citología , Ensayo de Inmunoadsorción Enzimática/métodos , Exocitosis/fisiología , Hemostasis/fisiología , Histonas/metabolismo , Humanos , Adhesividad Plaquetaria/fisiología , Trombosis , Cuerpos de Weibel-Palade/metabolismo
17.
Blood Rev ; 31(1): 47-56, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27596108

RESUMEN

Phenotypic assays are first-line in terms of diagnostic testing for inherited bleeding disorders. However, since the characterization of the genes that encode coagulation factors in the 1980s, significant progress has been made in translating this knowledge for diagnostic and therapeutic purposes. For the hemophilias, molecular genetic testing can be used to determine carrier status, establish a prenatal diagnosis and predict the likelihood of inhibitor development or anaphylaxis in response to infused coagulation factor concentrates. In contrast, for von Willebrand disease (VWD), significant recent advances in our understanding of the molecular genetic basis of the disease have allowed for the development of rational approaches to genetic diagnostics. Questions remain however, about this complex genetic disorder and how to incorporate emerging knowledge into diagnostic strategies.


Asunto(s)
Pruebas Genéticas/métodos , Hemofilia A/diagnóstico , Hemofilia A/genética , Hemofilia B/diagnóstico , Hemofilia B/genética , Enfermedades de von Willebrand/diagnóstico , Enfermedades de von Willebrand/genética , Factor VIII/genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas/normas , Humanos , Mutación , Garantía de la Calidad de Atención de Salud , Factor de von Willebrand/genética
18.
Shock ; 46(6): 655-662, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27405066

RESUMEN

OBJECTIVES: Sepsis is characterized by systemic activation of inflammatory and coagulation pathways in response to infection. Recently, it was demonstrated that histones released into the circulation by dying/activated cells may contribute to sepsis pathology. Although the ability of extracellular histones to modulate the procoagulant activities of several cell types has been investigated, the influence of histones on the hemostatic functions of circulating monocytes is unknown. To address this, we investigated the ability of histones to modulate the procoagulant potential of THP-1 cells and peripheral blood monocytes, and examined the effects of plasmas obtained from septic patients to induce a procoagulant phenotype on monocytic cells. METHODS/RESULTS: Tissue factor (TF) activity assays were performed on histone-treated THP-1 cells and blood monocytes. Exposure of monocytic cells to histones resulted in increases in TF activity, TF antigen, and phosphatidylserine exposure. Histones modulate the procoagulant activity via engagement of Toll-like receptors 2 and 4, and this effect was abrogated with inhibitory antibodies. Increased TF activity of histone-treated cells corresponded to enhanced thrombin generation in plasma determined by calibrated automated thrombography. Finally, TF activity was increased on monocytes exposed to plasma from septic patients, an effect that was attenuated in plasma from patients receiving unfractionated heparin (UFH). CONCLUSIONS: Our studies suggest that increased levels of extracellular histones found in sepsis contribute to dysregulated coagulation by increasing TF activity of monocytes. These procoagulant effects can be partially ameliorated in sepsis patients receiving UFH, thereby identifying extracellular histones as a potential therapeutic target for sepsis treatment.


Asunto(s)
Histonas/farmacología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo , Adulto , Coagulación Sanguínea/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Fosfatidilserinas/farmacología , Plasma/metabolismo , Sepsis/inmunología , Sepsis/metabolismo , Células THP-1
19.
Curr Opin Hematol ; 23(5): 471-8, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27428891

RESUMEN

PURPOSE OF REVIEW: In the last nine decades, large advances have been made toward the characterization of the pathogenic basis and clinical management of von Willebrand disease (VWD), the most prevalent inherited bleeding disorder. Pathological variations at the von Willebrand factor (VWF) locus present as a range of both quantitative and qualitative abnormalities that make up the complex clinical spectrum of VWD. This review describes the current understanding of the pathobiological basis of VWD. RECENT FINDINGS: The molecular basis of type 2 (qualitative abnormalities) and type 3 VWD (total quantitative deficiency) have been well characterized in recent decades. However, knowledge of type 1 VWD (partial quantitative deficiency) remains incomplete because of the allelic and locus heterogeneity of this trait, and is complicated by genetic variability at the VWF gene, interactions between the VWF gene and the environment, and the involvement of external modifying loci. Recent genome wide association studies and linkage analyses have sought to identify additional genes that modify the type 1 VWD phenotype. SUMMARY: Understanding the pathogenic basis of VWD will facilitate the development of novel treatment regimens for this disorder, and improve the ability to provide complementary molecular diagnostics for type 1 VWD.


Asunto(s)
Enfermedades de von Willebrand/etiología , Animales , Proteínas Portadoras , Células Endoteliales/metabolismo , Factor VIII/metabolismo , Pruebas Genéticas , Genotipo , Humanos , Patrón de Herencia , Mutación , Fenotipo , Unión Proteica , Enfermedades de von Willebrand/diagnóstico , Enfermedades de von Willebrand/terapia , Factor de von Willebrand/química , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
20.
Blood ; 128(6): 753-62, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27354721

RESUMEN

In recent years, the traditional view of the hemostatic system as being regulated by a coagulation factor cascade coupled with platelet activation has been increasingly challenged by new evidence that activation of the immune system strongly influences blood coagulation and pathological thrombus formation. Leukocytes can be induced to express tissue factor and release proinflammatory and procoagulant molecules such as granular enzymes, cytokines, and damage-associated molecular patterns. These mediators can influence all aspects of thrombus formation, including platelet activation and adhesion, and activation of the intrinsic and extrinsic coagulation pathways. Leukocyte-released procoagulant mediators increase systemic thrombogenicity, and leukocytes are actively recruited to the site of thrombus formation through interactions with platelets and endothelial cell adhesion molecules. Additionally, phagocytic leukocytes are involved in fibrinolysis and thrombus resolution, and can regulate clearance of platelets and coagulation factors. Dysregulated activation of leukocyte innate immune functions thus plays a role in pathological thrombus formation. Modulation of the interactions between leukocytes or leukocyte-derived procoagulant materials and the traditional hemostatic system is an attractive target for the development of novel antithrombotic strategies.


Asunto(s)
Hemostasis , Leucocitos/patología , Trombosis/sangre , Trombosis/patología , Animales , Factores de Coagulación Sanguínea/inmunología , Plaquetas/inmunología , Plaquetas/patología , Células Endoteliales/inmunología , Células Endoteliales/patología , Humanos , Leucocitos/inmunología , Fagocitosis , Tromboplastina/inmunología , Trombosis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...