Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 19(5): 1045-1055, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37862207

RESUMEN

Neurological disorders are a diverse group of conditions that affect the nervous system and include neurodegenerative diseases (Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease), cerebrovascular conditions (stroke), and neurodevelopmental disorders (autism spectrum disorder). Although they affect millions of individuals around the world, only a limited number of effective treatment options are available today. Since most neurological disorders express mitochondria-related metabolic perturbations, metformin, a biguanide type II antidiabetic drug, has attracted a lot of attention to be repurposed to treat neurological disorders by correcting their perturbed energy metabolism. However, controversial research emerges regarding the beneficial/detrimental effects of metformin on these neurological disorders. Given that most neurological disorders have complex etiology in their pathophysiology and are influenced by various risk factors such as aging, lifestyle, genetics, and environment, it is important to identify perturbed molecular functions that can be targeted by metformin in these neurological disorders. These molecules can then be used as biomarkers to stratify subpopulations of patients who show distinct molecular/pathological properties and can respond to metformin treatment, ultimately developing targeted therapy. In this review, we will discuss mitochondria-related metabolic perturbations and impaired molecular pathways in these neurological disorders and how these can be used as biomarkers to guide metformin-responsive treatment for the targeted therapy to treat neurological disorders.

2.
3.
Exp Neurol ; 334: 113454, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32877653

RESUMEN

Individuals with demyelinating diseases often experience difficulties during social interactions that are not well studied in preclinical models. Here, we describe a novel juvenile focal corpus callosum demyelination murine model exhibiting a social interaction deficit. Using this preclinical murine demyelination model, we discover that application of metformin, an FDA-approved drug, in this model promotes oligodendrocyte regeneration and remyelination and improves the social interaction. This beneficial effect of metformin acts through stimulating Ser436 phosphorylation in CBP, a histone acetyltransferase. In addition, we found that metformin acts through two distinct molecular pathways to enhance oligodendrocyte precursor (OPC) proliferation and differentiation, respectively. Metformin enhances OPC proliferation through early-stage autophagy inhibition, while metformin promotes OPC differentiation into mature oligodendrocytes through activating CBP Ser436 phosphorylation. In summary, we identify that metformin is a promising remyelinating agent to improve juvenile demyelination-associated social interaction deficits by promoting oligodendrocyte regeneration and remyelination.


Asunto(s)
Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/metabolismo , Histona Acetiltransferasas/metabolismo , Metformina/uso terapéutico , Remielinización/efectos de los fármacos , Interacción Social/efectos de los fármacos , Animales , Enfermedades Desmielinizantes/psicología , Femenino , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Masculino , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Remielinización/fisiología , Serina/metabolismo
4.
Theranostics ; 10(14): 6337-6360, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32483456

RESUMEN

Rationale: Monoacylglycerol lipase (Mgll), a hydrolase that breaks down the endocannabinoid 2-arachidonoyl glycerol (2-AG) to produce arachidonic acid (ARA), is a potential target for neurodegenerative diseases, such as Alzheimer's disease (AD). Increasing evidence shows that impairment of adult neurogenesis by perturbed lipid metabolism predisposes patients to AD. However, it remains unknown what causes aberrant expression of Mgll in AD and how Mgll-regulated lipid metabolism impacts adult neurogenesis, thus predisposing to AD during aging. Here, we identify Mgll as an aging-induced factor that impairs adult neurogenesis and spatial memory in AD, and show that metformin, an FDA-approved anti-diabetic drug, can reduce the expression of Mgll to reverse impaired adult neurogenesis, prevent spatial memory decline and reduce ß-amyloid accumulation. Methods: Mgll expression was assessed in both human AD patient post-mortem hippocampal tissues and 3xTg-AD mouse model. In addition, we used both the 3xTg-AD animal model and the CbpS436A genetic knock-in mouse model to identify that elevated Mgll expression is caused by the attenuation of the aPKC-CBP pathway, involving atypical protein kinase C (aPKC)-stimulated Ser436 phosphorylation of histone acetyltransferase CBP through biochemical methods. Furthermore, we performed in vivo adult neurogenesis assay with BrdU/EdU labelling and Morris water maze task in both animal models following pharmacological treatments to show the key role of Mgll in metformin-corrected neurogenesis and spatial memory deficits of AD through reactivating the aPKC-CBP pathway. Finally, we performed in vitro adult neurosphere assays using both animal models to study the role of the aPKC-CBP mediated Mgll repression in determining adult neural stem/progenitor cell (NPC) fate. Results: Here, we demonstrate that aging-dependent induction of Mgll is observed in the 3xTg-AD model and human AD patient post-mortem hippocampal tissues. Importantly, we discover that elevated Mgll expression is caused by the attenuation of the aPKC-CBP pathway. The accumulation of Mgll in the 3xTg-AD mice reduces the genesis of newborn neurons and perturbs spatial memory. However, we find that metformin-stimulated aPKC-CBP pathway decreases Mgll expression to recover these deficits in 3xTg-AD. In addition, we reveal that elevated Mgll levels in cultured adult NPCs from both 3xTg-AD and CbpS436A animal models are responsible for their NPC neuronal differentiation deficits. Conclusion: Our findings set the stage for development of a clinical protocol where Mgll would serve as a biomarker in early stages of AD to identify potential metformin-responsive AD patients to restore their neurogenesis and spatial memory.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/enzimología , Metformina/farmacología , Monoacilglicerol Lipasas/metabolismo , Neurogénesis/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Enfermedad de Alzheimer/patología , Animales , Biomarcadores/metabolismo , Proteína de Unión a CREB/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Transgénicos , Proteína Quinasa C/metabolismo
5.
Sci Rep ; 8(1): 13489, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30201979

RESUMEN

Epigenetic modifications have become an emerging interface that links extrinsic signals to alterations of gene expression that determine cell identity and function. However, direct signaling that regulates epigenetic modifications is unknown. Our previous work demonstrated that phosphorylation of CBP at Ser 436 by atypical protein kinase C (aPKC) regulates age-dependent hippocampal neurogenesis and memory. p300, a close family member of CBP, lacks the aPKC-mediated phosphorylation found in CBP. Here, we use a phosphorylation-competent p300 (G442S) knock-in (KI) mouse model that ectopically expresses p300 phosphorylation in a homologous site to CBP Ser436, and assess its roles in modulating hippocampal neurogenesis, CREB binding ability, and fear memory. Young adult (3 months) p300G422S-KI mice exhibit enhanced hippocampal neurogenesis due to increased cell survival of newly-generated neurons, without alterations in CREB binding and contextual fear memory. On the other hand, mature adult (6 months) p300G422S-KI mice display reduced CREB binding, associated with impaired contextual fear memory without alterations in hippocampal neurogenesis. Additionally, we show that repulsive interaction between pS133-CREB and pS422-p300G422S may contribute to the reduced CREB binding to p300G422S. Together, these data suggest that a single phosphorylation change in p300 has the capability to modulate hippocampal neurogenesis, CREB binding, and associative fear memory.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Miedo/fisiología , Hipocampo/crecimiento & desarrollo , Memoria/fisiología , Animales , Conducta Animal , Proteína p300 Asociada a E1A/genética , Técnicas de Sustitución del Gen , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Neurogénesis/fisiología , Fosforilación/fisiología , Proteína Quinasa C-alfa/metabolismo
6.
Stem Cells Dev ; 27(16): 1085-1096, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29893190

RESUMEN

While transplantation of human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs) shows therapeutic potential in animal stroke models, major concerns for translating hiPSC therapy to the clinic are efficacy and safety. Therefore, there is a demand to develop an optimal strategy to enhance the engraftment and regenerative capacity of transplanted hiPSC-NSCs to produce fully differentiated neural cells to replace lost brain tissues. Metformin, an FDA-approved drug, is an optimal neuroregenerative agent that not only promotes NSC proliferation but also drives NSCs toward differentiation. In this regard, we hypothesize that preconditioning of hiPSC-NSCs with metformin before transplantation into the stroke-damaged brain will improve engraftment and regenerative capabilities of hiPSC-NSCs, ultimately enhancing functional recovery. In this study, we show that pretreatment of hiPSC-NSCs with metformin enhances the proliferation and differentiation of hiPSC-NSCs in culture. Furthermore, metformin-preconditioned hiPSC-NSCs show increased engraftment 1 week post-transplantation in a rat endothelin-1 focal ischemic stroke model. In addition, metformin-preconditioned cell grafts exhibit increased survival compared to naive cell grafts at 7 weeks post-transplantation. Analysis of the grafts demonstrates that metformin preconditioning enhances the differentiation of hiPSC-NSCs at the expense of their proliferation. As an outcome, rats receiving metformin-preconditioned cells display accelerated gross motor recovery and reduced infarct volume. These studies represent a vital step forward in the optimization of hiPSC-NSC-based transplantation to promote post-stroke recovery.


Asunto(s)
Células Madre Pluripotentes Inducidas/trasplante , Metformina/administración & dosificación , Células-Madre Neurales/trasplante , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Células-Madre Neurales/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Recuperación de la Función , Accidente Cerebrovascular/patología , Rehabilitación de Accidente Cerebrovascular
7.
Neuron ; 94(3): 500-516.e9, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28472653

RESUMEN

During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes.


Asunto(s)
Encéfalo/embriología , Quimiocina CX3CL1/metabolismo , Interneuronas/metabolismo , Eminencia Media/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Oligodendroglía/metabolismo , Receptores de Quimiocina/genética , Animales , Receptor 1 de Quimiocinas CX3C , Diferenciación Celular , Movimiento Celular , Corteza Cerebral/citología , Embrión de Mamíferos , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Células-Madre Neurales/citología , Oligodendroglía/citología , Receptores de Quimiocina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA