Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 38(7): 113, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35578069

RESUMEN

The Gram-negative bacteria Xanthomonas oryzae pv. oryzae, the causative agent of bacterial leaf blight (BLB), received attention for being an economically damaging pathogen of rice worldwide. This damage prompted efforts to better understand the molecular mechanisms governing BLB disease progression. This research revealed numerous virulence factors that are employed by this vascular pathogen to invade the host, outcompete host defence mechanisms, and cause disease. In this review, we emphasize the virulence factors and molecular mechanisms that X. oryzae pv. oryzae uses to impair host defences, recent insights into the cellular and molecular mechanisms underlying host-pathogen interactions and components of pathogenicity, methods for developing X. oryzae pv. oryzae-resistant rice cultivars, strategies to mitigate disease outbreaks, and newly discovered genes and tools for disease management. We conclude that the implementation and application of cutting-edge technologies and tools are crucial to avoid yield losses from BLB and ensure food security.


Asunto(s)
Oryza , Xanthomonas , Proteínas Bacterianas/genética , Interacciones Huésped-Patógeno , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Virulencia/genética , Factores de Virulencia , Xanthomonas/genética
2.
J Appl Microbiol ; 132(4): 3111-3124, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35061923

RESUMEN

AIM: To understand how beneficial bacteria assist chilli plants (Capsicum annuum) in defence against biotrophic or hemibiotrophic pathogens. METHOD AND RESULTS: We quantified marker genes of plant defence pathways in Phytophthora capsici-infected chilli pepper treated with anti-oomycete plant growth-promoting rhizobacteria, Bacillus amyloliquefaciens, Bacillus velezensis and Acinetobacter sp. Plants displayed strong resistance, and the pathogen load in the roots was significantly lower in infected plants treated with bacterial biocontrol agents at all time points tested (1, 2 and 7 days after pathogen inoculation, p < 0.05). Gene expression profiling revealed that P. capsici infection in the absence of beneficial bacteria led to the upregulation of a wide array of defence genes. The addition of biocontrol bacteria modulated defence by further enhancing genes involved in programmed cell death, such as CaLOX1, CaPAL1, CaChitIV and CaPTI1, while suppressing others CaLRR1, a negative regulator of cell death. CONCLUSIONS: Our results suggest that the bacteria exerted a combined effect by directly antagonizing the pathogen and enhancing the expression of key plant defence genes, including those involved in cell death, causing resistance at early stages of infection by this hemibiotrophic pathogen.


Asunto(s)
Capsicum , Phytophthora , Apoptosis , Bacterias , Capsicum/genética , Capsicum/microbiología , Phytophthora/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rizosfera
3.
Heliyon ; 6(1): e03151, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32042948

RESUMEN

Bacterial leaf blight (BLB) and sheath brown rot (SBR), caused by Xanthomonas oryzae pv. oryzae (Xoo) and Pseudomonas fuscovaginae, respectively, are bacterial diseases that lead to substantial yield losses in rice. Natural plant-based products represent a sustainable alternative to combat bacterial diseases due to their biodegradability and overall safety. However efficient ways of delivering them are crucial to their success. In an attempt to maximize the antibacterial properties of botanical bactericides for the control of these pathogens, this study evaluated the efficiency of different emulsion formulations of Piper sarmentosum extracts. The emulsion formulations were demonstrated to be effective in controlling BLB and SBR of rice in in vitro plate assays and in planta under glasshouse conditions. The observed in vitro inhibition of the bacterial pathogens and significant disease suppression in planta indicate that these plant extract formulations represent promising alternatives to be adopted in management strategies for controlling rice diseases.

4.
Sci Total Environ ; 692: 267-280, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31349168

RESUMEN

Biotic interactions through diffusible and volatile organic compounds (VOCs) are frequent in nature. Soil bacteria are well-known producers of a wide range of volatile compounds (both organic and inorganic) with various biologically relevant activities. Since the last decade, they have been identified as natural biocontrol agents. Volatiles are airborne chemicals, which when released by bacteria, can trigger plant responses such as defence and growth promotion. In this study, we tested whether diffusible and volatile organic compounds (VOCs) produced by soil bacterial isolates exert anti-oomycete and plant growth-promoting effects. We also investigated the effects of inoculation with VOC-producing bacteria on the growth and development of Capsicum annuum and Arabidopsis thaliana seedlings. Our results demonstrate that organic VOCs emitted by bacterial antagonists negatively influence mycelial growth of the soil-borne phytopathogenic oomycete Phytophthora capsici by 35% in vitro. The bacteria showed plant growth promoting effects by stimulating biomass production, primary root growth and root hair development. Additionally, we provide evidence to suggest that these activities were deployed by the emission of either diffusible organic compounds or VOCs. Bacterial VOC profiles were obtained through solid phase microextraction (SPME) and analysis by gas chromatography coupled with mass spectrometry (GC-MS). This elucidated the main volatiles emitted by the isolates, which covered a wide range of aldehydes, alcohols, esters, carboxylic acids, and ketones. Collectively, twenty-five VOCs were identified to be produced by three bacteria; some being species-specific. Our data show that bacterial volatiles inhibits P. capsici in vitro and modulate both plant growth promotion and root system development. These results confirm the significance of soil bacteria and highlights that ways of harnessing them to improve plant growth, and as a biocontrol agent for soil-borne oomycetes through their volatile emissions deserve further investigation.


Asunto(s)
Arabidopsis/efectos de los fármacos , Bacterias/química , Capsicum/efectos de los fármacos , Phytophthora/efectos de los fármacos , Microbiología del Suelo , Compuestos Orgánicos Volátiles/metabolismo , Arabidopsis/crecimiento & desarrollo , Capsicum/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Phytophthora/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
5.
Microbiol Resour Announc ; 8(16)2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000552

RESUMEN

Achromobacter spanius UQ283 is a soilborne bacterium found to exhibit plant growth-promoting and disease-suppressing attributes in several plant species. Accordingly, we used long-read sequencing to determine its complete genome sequence. The assembled genome will aid in understanding the multifaceted interactions between plant growth-promoting rhizobacteria, pathogens, and plants.

6.
Front Plant Sci ; 9: 1502, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405657

RESUMEN

Bacterial isolates obtained from the rhizosphere of Arabidopsis and a plantless compost potting mix was screened for anti-oomycete activity against Phytophthora capsici, Phytophthora citricola, Phytophthora palmivora, and Phytophthora cinnamomi. Three out of 48 isolates exhibited more than 65% inhibition against all tested Phytophthora species and were selected for further studies. These strains, named UQ154, UQ156, and UQ202, are closely related to Bacillus amyloliquefaciens, Bacillus velezensis, and Acinetobacter sp., respectively, based on 16S rDNA sequence analysis. The isolates were evaluated for their ability to fix nitrogen, solubilize phosphate, as well as for siderophore, indoleacetic acid, cell wall degrading enzymes and biofilm production. Their plant growth promoting activities were evaluated by measuring their effect on the germination percentage, root and shoot length, and seedling vigor of lettuce plants. All of these traits were significantly enhanced in plants grown from seeds inoculated with the isolates compared with control plants. Moreover, bacteria-inoculated P. capsici-infected chili plants exhibited improved productivity based on CO2 assimilation rates. Both real-time quantitative PCR and disease severity index revealed significant decreases in pathogen load in infected chili root tissues when plants were previously inoculated with the isolates. Biocontrol activity may result from the secretion of diketopiperazines as identified by Gas chromatography-mass spectrometry analysis of bacterial cultures' extracts. Collectively, this work demonstrates the potential of bacterial isolates to control Phytophthora infection and promote plant growth. They can, therefore be considered as candidate microbial biofertilizers and biopesticides.

7.
Plant Sci ; 267: 102-111, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29362088

RESUMEN

To address food security, agricultural yields must increase to match the growing human population in the near future. There is now a strong push to develop low-input and more sustainable agricultural practices that include alternatives to chemicals for controlling pests and diseases, a major factor of heavy losses in agricultural production. Based on the adverse effects of some chemicals on human health, the environment and living organisms, researchers are focusing on potential biological control microbes as viable alternatives for the management of pests and plant pathogens. There is a growing body of evidence that demonstrates the potential of leaf and root-associated microbiomes to increase plant efficiency and yield in cropping systems. It is important to understand the role of these microbes in promoting growth and controlling diseases, and their application as biofertilizers and biopesticides whose success in the field is still inconsistent. This review focusses on how biocontrol microbes modulate plant defense mechanisms, deploy biocontrol actions in plants and offer new strategies to control plant pathogens. Apart from simply applying individual biocontrol microbes, there are now efforts to improve, facilitate and maintain long-term plant colonization. In particular, great hopes are associated with the new approaches of using "plant-optimized microbiomes" (microbiome engineering) and establishing the genetic basis of beneficial plant-microbe interactions to enable breeding of "microbe-optimized crops".


Asunto(s)
Agricultura/métodos , Agentes de Control Biológico , Microbiota , Control Biológico de Vectores/métodos , Enfermedades de las Plantas/prevención & control , Productos Agrícolas/microbiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...