Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Negl Trop Dis ; 15(7): e0009556, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34252106

RESUMEN

BACKGROUND: The introduction of the bacterium Wolbachia (wMel strain) into Aedes aegypti mosquitoes reduces their capacity to transmit dengue and other arboviruses. Evidence of a reduction in dengue case incidence following field releases of wMel-infected Ae. aegypti has been reported previously from a cluster randomised controlled trial in Indonesia, and quasi-experimental studies in Indonesia and northern Australia. METHODOLOGY/PRINCIPAL FINDINGS: Following pilot releases in 2015-2016 and a period of intensive community engagement, deployments of adult wMel-infected Ae. aegypti mosquitoes were conducted in Niterói, Brazil during 2017-2019. Deployments were phased across four release zones, with a total area of 83 km2 and a residential population of approximately 373,000. A quasi-experimental design was used to evaluate the effectiveness of wMel deployments in reducing dengue, chikungunya and Zika incidence. An untreated control zone was pre-defined, which was comparable to the intervention area in historical dengue trends. The wMel intervention effect was estimated by controlled interrupted time series analysis of monthly dengue, chikungunya and Zika case notifications to the public health surveillance system before, during and after releases, from release zones and the control zone. Three years after commencement of releases, wMel introgression into local Ae. aegypti populations was heterogeneous throughout Niterói, reaching a high prevalence (>80%) in the earliest release zone, and more moderate levels (prevalence 40-70%) elsewhere. Despite this spatial heterogeneity in entomological outcomes, the wMel intervention was associated with a 69% reduction in dengue incidence (95% confidence interval 54%, 79%), a 56% reduction in chikungunya incidence (95%CI 16%, 77%) and a 37% reduction in Zika incidence (95%CI 1%, 60%), in the aggregate release area compared with the pre-defined control area. This significant intervention effect on dengue was replicated across all four release zones, and in three of four zones for chikungunya, though not in individual release zones for Zika. CONCLUSIONS/SIGNIFICANCE: We demonstrate that wMel Wolbachia can be successfully introgressed into Ae. aegypti populations in a large and complex urban setting, and that a significant public health benefit from reduced incidence of Aedes-borne disease accrues even where the prevalence of wMel in local mosquito populations is moderate and spatially heterogeneous. These findings are consistent with the results of randomised and non-randomised field trials in Indonesia and northern Australia, and are supportive of the Wolbachia biocontrol method as a multivalent intervention against dengue, chikungunya and Zika.


Asunto(s)
Aedes/microbiología , Aedes/virología , Fiebre Chikungunya/transmisión , Dengue/transmisión , Control de Mosquitos/métodos , Wolbachia/fisiología , Infección por el Virus Zika/transmisión , Aedes/fisiología , Animales , Brasil/epidemiología , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/virología , Virus Chikungunya/fisiología , Dengue/epidemiología , Dengue/virología , Virus del Dengue/fisiología , Femenino , Humanos , Incidencia , Masculino , Mosquitos Vectores/microbiología , Mosquitos Vectores/fisiología , Mosquitos Vectores/virología , Virus Zika/fisiología , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/virología
2.
PLoS Negl Trop Dis ; 13(1): e0007023, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30620733

RESUMEN

BACKGROUND: Traditional vector control approaches such as source reduction and insecticide spraying have limited effect on reducing Aedes aegypti population. The endosymbiont Wolbachia is pointed as a promising tool to mitigate arbovirus transmission and has been deployed worldwide. Models predict a rapid increase on the frequency of Wolbachia-positive Ae. aegypti mosquitoes in local settings, supported by cytoplasmic incompatibility (CI) and high maternal transmission rate associated with the wMelBr strain. METHODOLOGY/PRINCIPLE FINDINGS: Wolbachia wMelBr strain was released for 20 consecutive weeks after receiving >87% approval of householders of the isolated community of Tubiacanga, Rio de Janeiro. wMelBr frequency plateued~40% during weeks 7-19, peaked 65% but dropped as releases stopped. A high (97.56%) maternal transmission was observed. Doubling releases and deploying mosquitoes with large wing length and low laboratory mortality produced no detectable effects on invasion trend. By investigating the lab colony maintenance procedures backwardly, pyrethroid resistant genotypes in wMelBr decreased from 68% to 3.5% after 17 generations. Therefore, we initially released susceptible mosquitoes in a local population highly resistant to pyrethroids which, associated with the over use of insecticides by householders, ended jeopardizing Wolbachia invasion. A new strain (wMelRio) was produced after backcrossing wMelBr females with males from field to introduce mostly pyrethroid resistance alleles. The new strain increased mosquito survival but produced relevant negative effects on Ae. aegypti fecundity traits, reducing egg clutche size and egg hatch. Despite the cost on fitness, wMelRio successful established where wMelBr failed, revealing that matching the local population genetics, especially insecticide resistance background, is critical to achieve invasion. CONCLUSIONS/SIGNIFICANCE: Local householders support was constantly high, reaching 90% backing on the second release (wMelRio strain). Notwithstanding the drought summer, the harsh temperature recorded (daily average above 30°C) did not seem to affect the expression of maternal transmission of wMel on a Brazilian background. Wolbachia deployment should match the insecticide resistance profile of the wild population to achieve invasion. Considering pyrethroid-resistance is a widely distributed phenotype in natural Ae. aegypti populations, future Wolbachia deployments must pay special attention in maintaining insecticide resistance in lab colonies for releases.


Asunto(s)
Aedes/efectos de los fármacos , Aedes/virología , Arbovirus/crecimiento & desarrollo , Resistencia a los Insecticidas/genética , Control Biológico de Vectores/métodos , Wolbachia/crecimiento & desarrollo , Aedes/genética , Animales , Agentes de Control Biológico , Brasil , ADN Mitocondrial/genética , Femenino , Masculino , Mosquitos Vectores/virología , Piretrinas/farmacología
3.
PLoS Negl Trop Dis ; 12(3): e0006339, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29558464

RESUMEN

Infection is a complex and dynamic process involving a population of invading microbes, the host and its responses, aimed at controlling the situation. Depending on the purpose and level of organization, infection at the organism level can be described by a process as simple as a coin toss, or as complex as a multi-factorial dynamic model; the former, for instance, may be adequate as a component of a population model, while the latter is necessary for a thorough description of the process beginning with a challenge with an infectious inoculum up to establishment or elimination of the pathogen. Experimental readouts in the laboratory are often static, snapshots of the process, assayed under some convenient experimental condition, and therefore cannot comprehensively describe the system. Different from the discrete treatment of infection in population models, or the descriptive summarized accounts of typical lab experiments, in this manuscript, infection is treated as a dynamic process dependent on the initial conditions of the infectious challenge, viral growth, and the host response along time. Here, experimental data is generated for multiple doses of type 1 dengue virus, and pathogen levels are recorded at different points in time for two populations of mosquitoes: either carrying endosymbiont bacteria Wolbachia or not. A dynamic microbe/host-response mathematical model is used to describe pathogen growth in the face of a host response like the immune system, and to infer model parameters for the two populations of insects, revealing a slight-but potentially important-protection conferred by the symbiont.


Asunto(s)
Aedes/microbiología , Aedes/virología , Virus del Dengue/fisiología , Modelos Biológicos , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , Wolbachia/fisiología , Animales , Dengue/prevención & control , Dengue/transmisión , Interacciones Huésped-Patógeno , Simbiosis , Replicación Viral
4.
Front Microbiol ; 9: 3011, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619118

RESUMEN

A Zika virus (ZIKV) pandemic started soon after the first autochthonous cases in Latin America. Although Aedes aegypti is pointed as the primary vector in Latin America, little is known about the fitness cost due to ZIKV infection. We investigated the effects of ZIKV infection on the life-history traits of Ae. aegypti females collected in three districts of Rio de Janeiro, Brazil (Barra, Deodoro, and Porto), equidistant ~25 km each other. Aedes aegypti mosquitoes were classified into infected (a single oral challenge with ZIKV) and superinfected (two ZIKV-infected blood meals spaced by 7 days each other). ZIKV infection reduced Ae. aegypti survival in two of the three populations tested, and superinfection produced a sharper increase in mortality in one of those populations. We hypothesized higher mortality with the presence of more ZIKV copies in Ae. aegypti females from Porto. The number of eggs laid per clutch was statistically similar between vector populations and infected and uninfected mosquitoes. Infection by ZIKV not affected female oviposition success. ZIKV infection impacted Ae. aegypti vectorial capacity by reducing its lifespan, although female fecundity remained unaltered. The outcome of these findings to disease transmission intensity still needs further evaluation.

5.
Evol Appl ; 8(9): 901-15, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26495042

RESUMEN

Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. We analyzed mitochondrial and nuclear genomewide single nucleotide polymorphism markers generated via Restriction-site Associated DNA sequencing, as well as traditional microsatellite markers in Ae. aegypti from Rio. We found four divergent mitochondrial lineages and a strong spatial structuring of mitochondrial variation, in contrast to the overall nuclear homogeneity across Rio. Despite a low overall differentiation in the nuclear genome, we detected strong spatial structure for variation in over 20 genes that have a significantly altered expression in response to insecticides, xenobiotics, and pathogens, including the novel biocontrol agent Wolbachia. Our results indicate that high genetic diversity, spatially unconstrained admixing likely mediated by male dispersal, along with locally heterogeneous genetic variation that could affect insecticide resistance and mosquito vectorial capacity, set limits to the effectiveness of measures to control dengue fever in Rio.

6.
Recurso Educacional Abierto en Portugués | CVSP - Brasil | ID: cfc-197984

RESUMEN

Módulo 2 - Biologia do Aedes, que faz parte do conjunto de videoaulas "Aedes aegypti - introdução aos aspectos científicos do vetor" que foi pensado para ajudar a rotina de diversos públicos: estudantes, professores, profissionais de comunicação e interessados em conhecer mais um pouco sobre a dengue e seus impactos. Começa levantando uma questão inquietante: Por que, dentre tantos mosquitos que existem, o Aedes aegypti interessa? O pesquisador do Instituto Oswaldo Cruz (IOC/Fiocruz) Rafael Freitas explica a importância do inseto, responsável pela transmissão da dengue, do ponto de vista da saúde pública. Ele mostra que na doença existem três componentes: o mosquito, o vírus e o homem, sendo o mosquito o mais fácil de ser controlado. O especialista explica que o inseto possui três fases muito diferentes de vida: o ovo, a fase aquática (com as etapas de larva e pupa) e a fase adulta, em que o mosquito chega a sua forma alada. Ele também explica que a temperatura pode acelerar o tempo de desenvolvimento do mosquito. Em seguida, o biólogo Gabriel Sylvestre explica que o A. aegypti vive aproximadamente 30 dias em condições normais e que, durante este período, precisa se alimentar. No caso das fêmeas, a alimentação com sangue é necessária como parte do processo de maturação dos ovos. Uma curiosidade: a cada picada, a fêmea pode sugar até duas vezes seu peso em sangue. O processo de inoculação do vírus da dengue, que pode acontecer durante a picada, também é explicado durante o módulo.


Asunto(s)
Dengue , Aedes , Aedes , Flavivirus , Infecciones por Flavivirus , Biología
7.
Parasit Vectors ; 7: 155, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24690324

RESUMEN

BACKGROUND: Surveillance is a critical component of any dengue prevention and control programme. Herein, we investigate the efficiency of the commercial kit Platelia Dengue NS1 Ag-ELISA to detect dengue virus (DENV) antigens in Aedes aegypti mosquitoes infected under laboratory conditions. METHODS: Under insectary conditions, four to five day-old mosquitoes were orally challenged with DENV-2 titer of 3.6 x 105 PFU equivalent/ml, incubated for 14 days and then killed. At ten time-points following mosquito death (0, 6, 12, 24, 72, 96, 120, 144 and 168 h), i.e., during a one-week period, dried mosquitoes were comparatively tested for the detection of the NS1 antigen with other methods of detection, such as qRT-PCR and virus isolation in C6/36 cells. RESULTS: We first observed that the NS1 antigen was more effective in detecting DENV-2 in Ae. aegypti between 12 and 72 h after mosquito death when compared with qRT-PCR. A second round involved comparing the sensitivity of detection of the NS1 antigen and virus isolation in C6/36 cells. The NS1 antigen was also more effective than virus isolation, detecting DENV-2 at all time-points, i.e., up to 168 h after mosquito death. Meanwhile, virus isolation was successful up to 96 h after Ae. aegypti death, but the number of positive samples per time period presented a tendency to decline progressively over time. From the 43 samples positive by the virus isolation technique, 38 (88.4%) were also positive by the NS1 test. CONCLUSION: Taken together, these results are the first to indicate that the NS1 antigen might be an interesting complementary tool to improve dengue surveillance through DENV detection in dried Ae. aegypti females.


Asunto(s)
Aedes/virología , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas no Estructurales Virales/aislamiento & purificación , Animales , Antígenos Virales , Línea Celular , Femenino , ARN Viral/aislamiento & purificación , Manejo de Especímenes
8.
PLoS One ; 9(3): e92424, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24676277

RESUMEN

BACKGROUND: During a dengue outbreak with co-circulation of DENV-1 and -2 in the city of Boa Vista, one patient was diagnosed with DENV-4, a serotype supposed absent from Brazil for almost 30 years. The re-emergence of DENV-4 triggered the intensification of mechanical and chemical Aedes aegypti control activities in order to reduce vector density and avoid DENV-4 dissemination throughout the country. METHODS/PRINCIPAL FINDINGS: Vector control activities consisted of (a) source reduction, (b) application of diflubenzuron against larvae and (c) vehicle-mounted space spraying of 2% deltamethrin to eliminate adults. Control activity efficacy was monitored by comparing the infestation levels and the number of eggs collected in ovitraps before and after interventions, performed in 22 Boa Vista districts, covering an area of ∼ 80% of the city and encompassing 56,837 dwellings. A total of 94,325 containers were eliminated or treated with diflubenzuron. The most frequently positive containers were small miscellaneous receptacles, which corresponded to 59% of all positive breeding sites. Insecticide resistance to deltamethrin was assessed before, during and after interventions by dose-response bioassays adopting WHO-based protocols. The intense use of the pyrethroid increased fourfold the resistance ratio of the local Ae. aegypti population only six months after the beginning of vector control. Curiously, this trend was also observed in the districts in which no deltamethrin was applied by the public health services. On the other hand, changes in the resistance ratio to the organophosphate temephos seemed less influenced by insecticide in Boa Vista. CONCLUSIONS: Despite the intense effort, mosquito infestation levels were only slightly reduced. Besides, the median number of eggs in ovitraps remained unaltered after control activity intensification. The great and rapid increase in pyrethroid resistance levels of natural Ae. aegypti populations is discussed in the context of both public and domestic intensification of chemical control due to a dengue outbreak.


Asunto(s)
Aedes/efectos de los fármacos , Virus del Dengue , Dengue/epidemiología , Brotes de Enfermedades , Resistencia a los Insecticidas , Insecticidas/farmacología , Control de Mosquitos , Animales , Brasil/epidemiología , Dengue/transmisión , Virus del Dengue/clasificación , Geografía , Caballos , Humanos , Control de Mosquitos/métodos , Vigilancia de la Población
9.
PLoS One ; 8(6): e65252, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23755202

RESUMEN

BACKGROUND: Dengue virus (DENV) is transmitted by Aedes aegypti, a species that lives in close association with human dwellings. The behavior of DENV-infected mosquitoes needs further investigation, especially regarding the potential influence of DENV on mosquito biting motivation and avidity. METHODOLOGY/PRINCIPAL FINDINGS: We orally challenged 4-5 day-old Ae. aegypti females with a low passage DENV serotype -2 (DENV-2) to test whether the virus influences motivation to feed (the likelihood that a mosquito obtains a blood-meal and the size of its blood meal) and avidity (the likelihood to re-feed after an interrupted first blood-meal). To assay motivation, we offered mosquitoes an anesthetized mouse for 2, 3, 4 or 5 minutes 7 or 14 days after the initial blood meals and measured the time they started feeding. 60.5% of the unexposed mosquitoes fed on the mouse, but only 40.5% of the positive ones did. Exposed but negative mosquitoes behaved similarly to unexposed ones (55.0% feeding). Thus DENV-2 infection decreased the mosquitoes' motivation to feed. To assay avidity, we offered the same mosquitoes a mouse two hours after the first round of feeding, and we measured the time at which they started probing. The exposed (positive or negative) mosquitoes were more likely to re-feed than the unexposed ones and, in particular, the size of the previous blood-meal that kept mosquitoes from re-feeding was larger in the exposed than in the unexposed mosquitoes. Thus, DENV-2 infection increased mosquito avidity. CONCLUSIONS/SIGNIFICANCE: DENV-2 significantly decreased the mosquitoes' motivation to feed, but increased their avidity (even after taking account the amount of blood previously imbibed). As these are important components of transmission, we expect that the changes of the blood-feeding behaviour impact the vectorial capacity Ae. aegypti for dengue.


Asunto(s)
Aedes/virología , Conducta Alimentaria , Insectos Vectores/virología , Motivación , Animales , Virus del Dengue/fisiología , Femenino , Ratones , Serogrupo
10.
PLoS One ; 8(3): e59933, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555838

RESUMEN

BACKGROUND: Aedes aegypti is the main vector of dengue, a disease that is increasing its geographical range as well as incidence rates. Despite its public health importance, the effect of dengue virus (DENV) on some mosquito traits remains unknown. Here, we investigated the impact of DENV-2 infection on the feeding behavior, survival, oviposition success and fecundity of Ae. aegypti females. METHODS/PRINCIPAL FINDINGS: After orally-challenging Ae. aegypti females with a DENV-2 strain using a membrane feeder, we monitored the feeding behavior, survival, oviposition success and fecundity throughout the mosquito lifespan. We observed an age-dependent cost of DENV infection on mosquito feeding behavior and fecundity. Infected individuals took more time to ingest blood from anesthetized mice in the 2(nd) and 3(rd) weeks post-infection, and also longer overall blood-feeding times in the 3(rd) week post-infection, when females were around 20 days old. Often, infected Ae. aegypti females did not lay eggs and when they were laid, smaller number of eggs were laid compared to uninfected controls. A reduction in the number of eggs laid per female was evident starting on the 3(rd) week post-infection. DENV-2 negatively affected mosquito lifespan, since overall the longevity of infected females was halved compared to that of the uninfected control group. CONCLUSIONS: The DENV-2 strain tested significantly affected Ae. aegypti traits directly correlated with vectorial capacity or mosquito population density, such as feeding behavior, survival, fecundity and oviposition success. Infected mosquitoes spent more time ingesting blood, had reduced lifespan, laid eggs less frequently, and when they did lay eggs, the clutches were smaller than uninfected mosquitoes.


Asunto(s)
Aedes/virología , Virus del Dengue , Fertilidad , Oviposición , Factores de Edad , Animales , Conducta Animal , Dengue/transmisión , Eritrocitos/virología , Conducta Alimentaria , Femenino , Insectos Vectores , Ratones , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...