Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; : e202400456, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39036936

RESUMEN

Enzymatic degradation of polymers holds promise for advancing towards a bio-based economy. However, bulky polymers presents challenges in accessibility for biocatalysts, hindering depolymerization reactions. Beyond the impact of crystallinity, polymer chains can reside in different conformations affecting binding efficiency to the enzyme. We previously showed that the gauche and trans chain conformers associated with crystalline and amorphous regions of the synthetic polyethylene terephthalate (PET) display different affinity to PETase, thus affecting the depolymerization rate. However, structural-function relationships for biopolymers remain poorly understood in biocatalysis. In this study, we explored biodegradation of by-us previously synthesized bio-polyesters made from a rigid bicyclic chiral terpene-based diol and copolymerized with various renewable diesters. Herein, four of those polyesters spanning from semi-aromatic to aliphatic were subjected to enzymatic degradations in concert with induced-fit docking (IFD) analyses. Our findings demonstrate the importance of conformational selection in enzymatic depolymerization of biopolymers. A straight or twisted conformation of the polymer chain is crucial in biocatalytic degradation by showing different affinities to enzyme ground-state conformers. This work highlights the importance of considering the conformational match between the polymer and the enzyme to optimize the biocatalytic degradation efficiency of biopolymers, providing valuable insights for the development of sustainable bioprocesses.

2.
Methods Enzymol ; 699: 311-341, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38942509

RESUMEN

Terpenes constitute one of the largest family of natural products with potent applications as renewable platform chemicals and medicines. The low activity, selectivity and stability displayed by terpene biosynthetic machineries can constitute an obstacle towards achieving expedient biosynthesis of terpenoids in processes that adhere to the 12 principles of green chemistry. Accordingly, engineering of terpene synthase enzymes is a prerequisite for industrial biotechnology applications, but obstructed by their complex catalysis that depend on reactive carbocationic intermediates that are prone to undergo bifurcation mechanisms. Rational redesign of terpene synthases can be tedious and requires high-resolution structural information, which is not always available. Furthermore, it has proven difficult to link sequence space of terpene synthase enzymes to specific product profiles. Herein, the author shows how ancestral sequence reconstruction (ASR) can favorably be used as a protein engineering tool in the redesign of terpene synthases without the need of a structure, and without excessive screening. A detailed workflow of ASR is presented along with associated limitations, with a focus on applying this methodology on terpene synthases. From selected examples of both class I and II enzymes, the author advocates that ancestral terpene cyclases constitute valuable assets to shed light on terpene-synthase catalysis and in enabling accelerated biosynthesis.


Asunto(s)
Transferasas Alquil y Aril , Ingeniería de Proteínas , Terpenos , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/química , Terpenos/metabolismo , Terpenos/química , Ingeniería de Proteínas/métodos , Evolución Molecular
3.
Faraday Discuss ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864456

RESUMEN

More than 8 billion tons of plastic waste has been generated, posing severe environmental consequences and health risks. Due to prolonged exposure, microplastic particles are found in human blood and other bodily fluids. Despite a lack of toxicity studies regarding microplastics, harmful effects for humans seem plausible and cannot be excluded. As small plastic particles readily translocate from the gut to body fluids, enzyme-based treatment of serum could constitute a promising future avenue to clear synthetic polymers and their corresponding oligomers via their degradation into monomers of lower toxicity than the material they originate from. Still, whereas it is known that the enzymatic depolymerization rate of synthetic polymers varies by orders of magnitude depending on the buffer and media composition, the activity of plastic-degrading enzymes in serum was unknown. Here, we report how an engineered PETase, which we show to be generally trans-selective via induced fit docking, can depolymerize two different microplastic-like substrates of the commodity polymer polyethylene terephthalate (PET) into its non-toxic monomer terephthalic acid (TPA) alongside mono(2-hydroxyethyl)terephthalate (MHET) in human serum at 37 °C. We show that the application of PETase does not influence cell viability in vitro. Our work highlights the potential of applying biocatalysis in biomedicine and represents a first step towards finding a future solution to the problem that microplastics in the bloodstream may pose.

4.
Nat Commun ; 14(1): 6527, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845250

RESUMEN

We report the application of ancestral sequence reconstruction on coronavirus spike protein, resulting in stable and highly soluble ancestral scaffold antigens (AnSAs). The AnSAs interact with plasma of patients recovered from COVID-19 but do not bind to the human angiotensin-converting enzyme 2 (ACE2) receptor. Cryo-EM analysis of the AnSAs yield high resolution structures (2.6-2.8 Å) indicating a closed pre-fusion conformation in which all three receptor-binding domains (RBDs) are facing downwards. The structures reveal an intricate hydrogen-bonding network mediated by well-resolved loops, both within and across monomers, tethering the N-terminal domain and RBD together. We show that AnSA-5 can induce and boost a broad-spectrum immune response against the wild-type RBD as well as circulating variants of concern in an immune organoid model derived from tonsils. Finally, we highlight how AnSAs are potent scaffolds by replacing the ancestral RBD with the wild-type sequence, which restores ACE2 binding and increases the interaction with convalescent plasma.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Sueroterapia para COVID-19 , Enlace de Hidrógeno , Organoides , Glicoproteína de la Espiga del Coronavirus/genética , Unión Proteica
5.
Commun Biol ; 6(1): 947, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723200

RESUMEN

Metabolite-level regulation of enzyme activity is important for microbes to cope with environmental shifts. Knowledge of such regulations can also guide strain engineering for biotechnology. Here we apply limited proteolysis-small molecule mapping (LiP-SMap) to identify and compare metabolite-protein interactions in the proteomes of two cyanobacteria and two lithoautotrophic bacteria that fix CO2 using the Calvin cycle. Clustering analysis of the hundreds of detected interactions shows that some metabolites interact in a species-specific manner. We estimate that approximately 35% of interacting metabolites affect enzyme activity in vitro, and the effect is often minor. Using LiP-SMap data as a guide, we find that the Calvin cycle intermediate glyceraldehyde-3-phosphate enhances activity of fructose-1,6/sedoheptulose-1,7-bisphosphatase (F/SBPase) from Synechocystis sp. PCC 6803 and Cupriavidus necator in reducing conditions, suggesting a convergent feed-forward activation of the cycle. In oxidizing conditions, glyceraldehyde-3-phosphate inhibits Synechocystis F/SBPase by promoting enzyme aggregation. In contrast, the glycolytic intermediate glucose-6-phosphate activates F/SBPase from Cupriavidus necator but not F/SBPase from Synechocystis. Thus, metabolite-level regulation of the Calvin cycle is more prevalent than previously appreciated.


Asunto(s)
Bacterias , Gliceraldehído , Biotecnología , Análisis por Conglomerados , Gliceraldehído 3-Fosfato , Fosfatos
6.
ChemSusChem ; 16(18): e202301237, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37679097

RESUMEN

Invited for this month's cover is the groups of Prof. Minna Hakkarainen, Prof. István Furó and Assoc. Prof. Per-Olof Syrén at KTH Royal Institute of Technology. The image shows how microwave irradiation is an efficient pre-treatment method of polyethylene terephthalate (PET) for subsequent biocatalytic depolymerization. The Research Article itself is available at 10.1002/cssc.202300742.

7.
ChemSusChem ; 16(18): e202300742, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37384425

RESUMEN

Recycling plastics is the key to reaching a sustainable materials economy. Biocatalytic degradation of plastics shows great promise by allowing selective depolymerization of man-made materials into constituent building blocks under mild aqueous conditions. However, insoluble plastics have polymer chains that can reside in different conformations and show compact secondary structures that offer low accessibility for initiating the depolymerization reaction by enzymes. In this work, we overcome these shortcomings by microwave irradiation as a pre-treatment process to deliver powders of polyethylene terephthalate (PET) particles suitable for subsequent biotechnology-assisted plastic degradation by previously generated engineered enzymes. An optimized microwave step resulted in 1400 times higher integral of released terephthalic acid (TPA) from high-performance liquid chromatography (HPLC), compared to original untreated PET bottle. Biocatalytic plastic hydrolysis of substrates originating from PET bottles responded to 78 % yield conversion from 2 h microwave pretreatment and 1 h enzymatic reaction at 30 °C. The increase in activity stems from enhanced substrate accessibility from the microwave step, followed by the administration of designer enzymes capable of accommodating oligomers and shorter chains released in a productive conformation.


Asunto(s)
Plásticos , Tereftalatos Polietilenos , Humanos , Plásticos/química , Plásticos/metabolismo , Plásticos/efectos de la radiación , Tereftalatos Polietilenos/química , Microondas , Polímeros/química , Hidrolasas/metabolismo
8.
Enzyme Microb Technol ; 163: 110164, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36455467

RESUMEN

The development of biorefinery approaches is of great relevance for the sustainable production of valuable compounds. In accordance with circular economy principles, waste cooking oils (WCOs) are renewable resources and biorefinery feedstocks, which contribute to a reduced impact on the environment. Frequently, this waste is wrongly disposed of into municipal sewage systems, thereby creating problems for the environment and increasing treatment costs in wastewater treatment plants. In this study, regenerated WCOs, which were intended for the production of biofuels, were transformed through a chemo-enzymatic approach to produce hydroxy fatty acids, which were further used in polycondensation reaction for polyester production. Escherichia coli whole cell biocatalyst containing the recombinantly produced Elizabethkingia meningoseptica Oleate hydratase (Em_OhyA) was used for the biocatalytic hydration of crude WCOs-derived unsaturated free fatty acids for the production of hydroxy fatty acids. Further hydrogenation reaction and methylation of the crude mixture allowed the production of (R)- 10-hydroxystearic acid methyl ester that was further purified with a high purity (> 90%), at gram scale. The purified (R)- 10-hydroxystearic acid methyl ester was polymerized through a polycondensation reaction to produce the corresponding polyester. This work highlights the potential of waste products to obtain bio-based hydroxy fatty acids and polyesters through a biorefinery approach.


Asunto(s)
Ácidos Grasos , Poliésteres , Aceites , Biocombustibles , Ácidos Grasos Insaturados , Culinaria , Ésteres
10.
J Phys Chem B ; 126(21): 3809-3821, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35583961

RESUMEN

Thermostability is the key to maintain the structural integrity and catalytic activity of enzymes in industrial biotechnological processes, such as terpene cyclase-mediated generation of medicines, chiral synthons, and fine chemicals. However, affording a large increase in the thermostability of enzymes through site-directed protein engineering techniques can constitute a challenge. In this paper, we used ancestral sequence reconstruction to create a hyperstable variant of the ent-copalyl diphosphate synthase PtmT2, a terpene cyclase involved in the assembly of antibiotics. Molecular dynamics simulations on the µs timescale were performed to shed light on possible molecular mechanisms contributing to activity at an elevated temperature and the large 40 °C increase in melting temperature observed for an ancestral variant of PtmT2. In silico analysis revealed key differences in the flexibility of a loop capping the active site, between extant and ancestral proteins. For the modern enzyme, the loop collapses into the active site at elevated temperatures, thus preventing biocatalysis, whereas the loop remains in a productive conformation both at ambient and high temperatures in the ancestral variant. Restoring a Pro loop residue introduced in the ancestral variant to the corresponding Gly observed in the extant protein led to reduced catalytic activity at high temperatures, with only moderate effects on the melting temperature, supporting the importance of the flexibility of the capping loop in thermoadaptation. Conversely, the inverse Gly to Pro loop mutation in the modern enzyme resulted in a 3-fold increase in the catalytic rate. Despite an overall decrease in maximal activity of ancestor compared to wild type, its increased thermostability provides a robust backbone amenable for further enzyme engineering. Our work cements the importance of loops in enzyme catalysis and provides a molecular mechanism contributing to thermoadaptation in an ancestral enzyme.


Asunto(s)
Diterpenos , Ingeniería de Proteínas , Biocatálisis , Dominio Catalítico , Diterpenos/química , Estabilidad de Enzimas/genética , Cinética
11.
JACS Au ; 1(11): 1949-1960, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34849510

RESUMEN

Generation of renewable polymers is a long-standing goal toward reaching a more sustainable society, but building blocks in biomass can be incompatible with desired polymerization type, hampering the full implementation potential of biomaterials. Herein, we show how conceptually simple oxidative transformations can be used to unlock the inherent reactivity of terpene synthons in generating polyesters by two different mechanisms starting from the same α-pinene substrate. In the first pathway, α-pinene was oxidized into the bicyclic verbanone-based lactone and subsequently polymerized into star-shaped polymers via ring-opening polymerization, resulting in a biobased semicrystalline polyester with tunable glass transition and melting temperatures. In a second pathway, polyesters were synthesized via polycondensation, utilizing the diol 1-(1'-hydroxyethyl)-3-(2'-hydroxy-ethyl)-2,2-dimethylcyclobutane (HHDC) synthesized by oxidative cleavage of the double bond of α-pinene, together with unsaturated biobased diesters such as dimethyl maleate (DMM) and dimethyl itaconate (DMI). The resulting families of terpene-based polyesters were thereafter successfully cross-linked by either transetherification, utilizing the terminal hydroxyl groups of the synthesized verbanone-based materials, or by UV irradiation, utilizing the unsaturation provided by the DMM or DMI moieties within the HHDC-based copolymers. This work highlights the potential to apply an oxidative toolbox to valorize inert terpene metabolites enabling generation of biosourced polyesters and coatings thereof by complementary mechanisms.

12.
iScience ; 24(3): 102154, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33665572

RESUMEN

We show the successful application of ancestral sequence reconstruction to enhance the activity of iduronate-2-sulfatase (IDS), thereby increasing its therapeutic potential for the treatment of Hunter syndrome-a lysosomal storage disease caused by impaired function of IDS. Current treatment, enzyme replacement therapy with recombinant human IDS, does not alleviate all symptoms, and an unmet medical need remains. We reconstructed putative ancestral sequences of mammalian IDS and compared them with extant IDS. Some ancestral variants displayed up to 2-fold higher activity than human IDS in in vitro assays and cleared more substrate in ex vivo experiments in patient fibroblasts. This could potentially allow for lower dosage or enhanced therapeutic effect in enzyme replacement therapy, thereby improving treatment outcomes and cost efficiency, as well as reducing treatment burden. In summary, we showed that ancestral sequence reconstruction can be applied to lysosomal enzymes that function in concert with modern enzymes and receptors in cells.

13.
Appl Microbiol Biotechnol ; 105(5): 2003-2015, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33582834

RESUMEN

Phenylobacterium immobile strain E is a soil bacterium with a striking metabolism relying on xenobiotics, such as the herbicide pyrazon, as sole carbon source instead of more bioavailable molecules. Pyrazon is a heterocyclic aromatic compound of environmental concern and its biodegradation pathway has only been reported in P. immobile. The multicomponent pyrazon oxygenase (PPO), a Rieske non-heme iron oxygenase, incorporates molecular oxygen at the 2,3 position of the pyrazon phenyl moiety as first step of degradation, generating a cis-dihydrodiendiol. The aim of this work was to identify the genes encoding for each one of the PPO components and enable their functional assembly in Escherichia coli. P. immobile strain E genome sequencing revealed genes encoding for RO components, such as ferredoxin-, reductase-, α- and ß-subunits of an oxygenase. Though, P. immobile E displays three prominent differences with respect to the ROs currently characterized: (1) an operon-like organization for PPO is absent, (2) all the elements are randomly scattered in its DNA, (3) not only one, but 19 different α-subunits are encoded in its genome. Herein, we report the identification of the PPO components involved in pyrazon cis-dihydroxylation in P. immobile, its appropriate assembly, and its functional reconstitution in E. coli. Our results contributes with the essential missing pieces to complete the overall elucidation of the PPO from P. immobile. KEY POINTS: • Phenylobacterium immobile E DSM 1986 harbors the only described pyrazon oxygenase (PPO). • We elucidated the genes encoding for all PPO components. • Heterologous expression of PPO enabled pyrazon dihydroxylation in E. coli JW5510.


Asunto(s)
Escherichia coli , Oxigenasas , Caulobacteraceae , Escherichia coli/genética , Hierro , Oxigenasas/genética , Piridazinas
14.
Adv Sci (Weinh) ; 8(2): 2002778, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33511014

RESUMEN

Polar polythiophenes with oligoethylene glycol side chains are exceedingly soft materials. A low glass transition temperature and low degree of crystallinity prevents their use as a bulk material. The synthesis of a copolymer comprising 1) soft polythiophene blocks with tetraethylene glycol side chains, and 2) hard urethane segments is reported. The molecular design is contrary to that of other semiconductor-insulator copolymers, which typically combine a soft nonconjugated spacer with hard conjugated segments. Copolymerization of polar polythiophenes and urethane segments results in a ductile material that can be used as a free-standing solid. The copolymer displays a storage modulus of 25 MPa at room temperature, elongation at break of 95%, and a reduced degree of swelling due to hydrogen bonding. Both chemical doping and electrochemical oxidation reveal that the introduction of urethane segments does not unduly reduce the hole charge-carrier mobility and ability to take up charge. Further, stable operation is observed when the copolymer is used as the active layer of organic electrochemical transistors.

15.
J Am Chem Soc ; 143(10): 3794-3807, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33496585

RESUMEN

Structural information is crucial for understanding catalytic mechanisms and to guide enzyme engineering efforts of biocatalysts, such as terpene cyclases. However, low sequence similarity can impede homology modeling, and inherent protein instability presents challenges for structural studies. We hypothesized that X-ray crystallography of engineered thermostable ancestral enzymes can enable access to reliable homology models of extant biocatalysts. We have applied this concept in concert with molecular modeling and enzymatic assays to understand the structure activity relationship of spiroviolene synthase, a class I terpene cyclase, aiming to engineer its specificity. Engineering a surface patch in the reconstructed ancestor afforded a template structure for generation of a high-confidence homology model of the extant enzyme. On the basis of structural considerations, we designed and crystallized ancestral variants with single residue exchanges that exhibited tailored substrate specificity and preserved thermostability. We show how the two single amino acid alterations identified in the ancestral scaffold can be transferred to the extant enzyme, conferring a specificity switch that impacts the extant enzyme's specificity for formation of the diterpene spiroviolene over formation of sesquiterpenes hedycaryol and farnesol by up to 25-fold. This study emphasizes the value of ancestral sequence reconstruction combined with enzyme engineering as a versatile tool in chemical biology.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Ingeniería de Proteínas , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Biocatálisis , Cristalografía por Rayos X , Ciclización , Diterpenos/química , Diterpenos/metabolismo , Mutagénesis Sitio-Dirigida , Conformación Proteica , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Especificidad por Sustrato
16.
ChemSusChem ; 14(19): 4028-4040, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33497036

RESUMEN

Although recovery of fibers from used textiles with retained material quality is desired, separation of individual components from polymer blends used in today's complex textile materials is currently not available at viable scale. Biotechnology could provide a solution to this pressing problem by enabling selective depolymerization of recyclable fibers of natural and synthetic origin, to isolate constituents or even recover monomers. We compiled experimental data for biocatalytic polymer degradation with a focus on synthetic polymers with hydrolysable links and calculated conversion rates to explore this path The analysis emphasizes that we urgently need major research efforts: beyond cellulose-based fibers, biotechnological-assisted depolymerization of plastics so far only works for polyethylene terephthalate, with degradation of a few other relevant synthetic polymer chains being reported. In contrast, by analyzing market data and emerging trends for synthetic fibers in the textile industry, in combination with numbers from used garment collection and sorting plants, it was shown that the use of difficult-to-recycle blended materials is rapidly growing. If the lack of recycling technology and production trend for fiber blends remains, a volume of more than 3400 Mt of waste will have been accumulated by 2030. This work highlights the urgent need to transform the textile industry from a biocatalytic perspective.

17.
Sci Rep ; 10(1): 1315, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992763

RESUMEN

Phenylalanine/tyrosine ammonia-lyases (PAL/TALs) have been approved by the FDA for treatment of phenylketonuria and may harbour potential for complementary treatment of hereditary tyrosinemia Type I. Herein, we explore ancestral sequence reconstruction as an enzyme engineering tool to enhance the therapeutic potential of PAL/TALs. We reconstructed putative ancestors from fungi and compared their catalytic activity and stability to two modern fungal PAL/TALs. Surprisingly, most putative ancestors could be expressed as functional tetramers in Escherichia coli and thus retained their ability to oligomerize. All ancestral enzymes displayed increased thermostability compared to both modern enzymes, however, the increase in thermostability was accompanied by a loss in catalytic turnover. One reconstructed ancestral enzyme in particular could be interesting for further drug development, as its ratio of specific activities is more favourable towards tyrosine and it is more thermostable than both modern enzymes. Moreover, long-term stability assessment showed that this variant retained substantially more activity after prolonged incubation at 25 °C and 37 °C, as well as an increased resistance to incubation at 60 °C. Both of these factors are indicative of an extended shelf-life of biopharmaceuticals. We believe that ancestral sequence reconstruction has potential for enhancing the properties of enzyme therapeutics, especially with respect to stability. This work further illustrates that resurrection of putative ancestral oligomeric proteins is feasible and provides insight into the extent of conservation of a functional oligomerization surface area from ancestor to modern enzyme.


Asunto(s)
Suplementos Dietéticos , Terapia de Reemplazo Enzimático , Fenilanina Amoníaco-Liasa/uso terapéutico , Tirosinemias/terapia , Animales , Activación Enzimática , Terapia de Reemplazo Enzimático/métodos , Estabilidad de Enzimas , Hongos/clasificación , Hongos/enzimología , Hongos/genética , Humanos , Cinética , Modelos Moleculares , Fenilanina Amoníaco-Liasa/administración & dosificación , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/clasificación , Conformación Proteica , Proteínas Recombinantes , Relación Estructura-Actividad , Termodinámica , Tirosinemias/etiología
18.
Chembiochem ; 20(13): 1664-1671, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30793830

RESUMEN

Significantly increased production of biobased polymers is a prerequisite to replace petroleum-based materials towards reaching a circular bioeconomy. However, many renewable building blocks from wood and other plant material are not directly amenable for polymerization, due to their inert backbones and/or lack of functional group compatibility with the desired polymerization type. Based on a retro-biosynthetic analysis of polyesters, a chemoenzymatic route from (-)-α-pinene towards a verbanone-based lactone, which is further used in ring-opening polymerization, is presented. Generated pinene-derived polyesters showed elevated degradation and glass transition temperatures, compared with poly(ϵ-decalactone), which lacks a ring structure in its backbone. Semirational enzyme engineering of the cyclohexanone monooxygenase from Acinetobacter calcoaceticus enabled the biosynthesis of the key lactone intermediate for the targeted polyester. As a proof of principle, one enzyme variant identified from screening in a microtiter plate was used in biocatalytic upscaling, which afforded the bicyclic lactone in 39 % conversion in shake flask scale reactions.


Asunto(s)
Monoterpenos Bicíclicos/química , Poliésteres/síntesis química , Animales , Catalasa/química , Bovinos , Escherichia coli/enzimología , Glucosa 1-Deshidrogenasa/química , Oxigenasas de Función Mixta/química , Polimerizacion
19.
Z Naturforsch C J Biosci ; 74(3-4): 91-100, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30789828

RESUMEN

Accelerated generation of bio-based materials is vital to replace current synthetic polymers obtained from petroleum with more sustainable options. However, many building blocks available from renewable resources mainly contain unreactive carbon-carbon bonds, which obstructs their efficient polymerization. Herein, we highlight the potential of applying biocatalysis to afford tailored functionalization of the inert carbocyclic core of multicyclic terpenes toward advanced materials. As a showcase, we unlock the inherent monomer reactivity of norcamphor, a bicyclic ketone used as a monoterpene model system in this study, to afford polyesters with unprecedented backbones. The efficiencies of the chemical and enzymatic Baeyer-Villiger transformation in generating key lactone intermediates are compared. The concepts discussed herein are widely applicable for the valorization of terpenes and other cyclic building blocks using chemoenzymatic strategies.


Asunto(s)
Lactonas/química , Norbornanos/química , Oxidorreductasas/química , Poliésteres/síntesis química , Terpenos/química , Biocatálisis , Ciclización , Humanos , Lactonas/metabolismo , Norbornanos/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Poliésteres/metabolismo , Polimerizacion , Prenilación , Terpenos/metabolismo
20.
RSC Adv ; 9(62): 36217-36226, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-35540575

RESUMEN

The recalcitrance of plastics like nylon and other polyamides contributes to environmental problems (e.g. microplastics in oceans) and restricts possibilities for recycling. The fact that hitherto discovered amidases (EC 3.5.1. and 3.5.2.) only show no, or low, activity on polyamides currently obstructs biotechnological-assisted depolymerization of man-made materials. In this work, we capitalized on enzyme engineering to enhance the promiscuous amidase activity of polyesterases. Through enzyme design we created a reallocated water network adapted for hydrogen bond formation to synthetic amide backbones for enhanced transition state stabilization in the polyester-hydrolyzing biocatalysts Humicola insolens cutinase and Thermobifida cellulosilytica cutinase 1. This novel concept enabled increased catalytic efficiency towards amide-containing soluble substrates. The afforded enhanced hydrolysis of the amide bond-containing insoluble substrate 3PA 6,6 by designed variants was aligned with improved transition state stabilization identified by molecular dynamics (MD) simulations. Furthermore, the presence of a favorable water-molecule network that interacted with synthetic amides in the variants resulted in a reduced activity on polyethylene terephthalate (PET). Our data demonstrate the potential of using enzyme engineering to improve the amidase activity for polyesterases to act on synthetic amide-containing polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA