Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 4236, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862896

RESUMEN

Excessive osteoclastic bone erosion disrupts normal bone remodeling and leads to bone loss in many skeletal diseases, including inflammatory arthritis, such as rheumatoid arthritis (RA) and psoriatic arthritis, periodontitis and peri-prosthetic loosening. Functional control of osteoclasts is critical for the maintenance of bone homeostasis. However, the mechanisms that restrain osteoclast resorptive function are not fully understood. In this study, we identify a previously unrecognized role for G-protein Gα13 in inhibition of osteoclast adhesion, fusion and bone resorptive function. Gα13 is highly expressed in mature multinucleated osteoclasts, but not during early differentiation. Deficiency of Gα13 in myeloid osteoclast lineage (Gα13ΔM/ΔM mice) leads to super spread morphology of multinucleated giant osteoclasts with elevated bone resorptive capacity, corroborated with an osteoporotic bone phenotype in the Gα13ΔM/ΔM mice. Mechanistically, Gα13 functions as a brake that restrains the c-Src, Pyk2, RhoA-Rock2 mediated signaling pathways and related gene expressions to control the ability of osteoclasts in fusion, adhesion, actin cytoskeletal remodeling and resorption. Genome wide analysis reveals cytoskeleton related genes that are suppressed by Gα13, identifying Gα13 as a critical cytoskeletal regulator in osteoclasts. We also identify a genome wide regulation of genes responsible for mitochondrial biogenesis and function by Gα13 in osteoclasts. Furthermore, the significant correlation between Gα13 expression levels, TNF activity and RA disease activity in RA patients suggests that the Gα13 mediated mechanisms represent attractive therapeutic targets for diseases associated with excessive bone resorption.


Asunto(s)
Citoesqueleto/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Mitocondrias/metabolismo , Osteoclastos/metabolismo , Animales , Resorción Ósea/genética , Resorción Ósea/metabolismo , Adhesión Celular , Fusión Celular , Citoesqueleto/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Estudio de Asociación del Genoma Completo , Ratones , Ratones Transgénicos , Mitocondrias/genética
2.
Protein Sci ; 28(2): 305-312, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30345641

RESUMEN

Heterotrimeric G-proteins are cellular signal transducers. They mainly relay signals from G-protein-coupled receptors (GPCRs). GPCRs function as guanine nucleotide-exchange factors to active these G-proteins. Based on the sequence and functional similarities, these G-proteins are grouped into four subfamilies: Gs , Gi , Gq , and G12/13 . The G12/13 subfamily consists of two members: G12 and G13 . G12/13 -mediated signaling pathways play pivotal roles in a variety of physiological processes, while aberrant regulation of this pathway has been identified in various human diseases. Here we summarize the signaling mechanisms and physiological functions of Gα13 in blood vessel formation and bone homeostasis. We further discuss the expanding roles of Gα13 in cancers, serving as oncogenes as well as tumor suppressors.


Asunto(s)
Huesos/enzimología , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Neoplasias/enzimología , Neovascularización Patológica , Proteínas Oncogénicas/metabolismo , Transducción de Señal , Animales , Humanos
3.
J Mol Biol ; 429(24): 3836-3849, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29079481

RESUMEN

Heterotrimeric G-proteins are essential cellular signal transducers. One of the G-proteins, Gα13, is critical for actin cytoskeletal reorganization, cell migration, cell proliferation, and apoptosis. Previously, we have shown that Gα13 is essential for both G-protein-coupled receptor and receptor tyrosine kinase-induced actin cytoskeletal reorganization such as dynamic dorsal ruffle turnover and cell migration. However, the mechanism by which Gα13 signals to actin cytoskeletal reorganization is not completely understood. Here we show that Gα13 directly interacts with Abl tyrosine kinase, which is a critical regulator of actin cytoskeleton. This interaction is critical for Gα13-induced dorsal ruffle turnover, endothelial cell remodeling, and cell migration. Our data uncover a new molecular signaling pathway by which Gα13 controls actin cytoskeletal reorganization.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular/fisiología , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Proteínas Oncogénicas v-abl/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Ratones , Ratones Noqueados , Proteínas Oncogénicas v-abl/genética , Transducción de Señal , Esferoides Celulares , Cicatrización de Heridas
4.
Nat Commun ; 8: 15286, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28513584

RESUMEN

Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors.


Asunto(s)
Segregación Cromosómica/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/fisiología , Mitosis/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/fisiología , Simulación por Computador , Dineínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Modelos Biológicos , Método de Montecarlo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo
5.
J Mol Biol ; 428(19): 3850-68, 2016 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-27515397

RESUMEN

Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica , Transducción de Señal , Animales , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Humanos , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
6.
Nat Commun ; 6: 7322, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26031557

RESUMEN

Aneuploidy-chromosome instability leading to incorrect chromosome number in dividing cells-can arise from defects in centrosome duplication, bipolar spindle formation, kinetochore-microtubule attachment, chromatid cohesion, mitotic checkpoint monitoring or cytokinesis. As most tumours show some degree of aneuploidy, mechanistic understanding of these pathways has been an intense area of research, to provide potential therapeutics. Here we present a mechanism for aneuploidy in fission yeast based on spindle pole microtubule defocusing by loss of kinesin-14 Pkl1, leading to kinesin-5 Cut7-dependent aberrant long spindle microtubule minus-end protrusions that push the properly segregated chromosomes to the site of cell division, resulting in chromosome cut at cytokinesis. Pkl1 localization and function at the spindle pole is mutually dependent on spindle pole-associated protein Msd1. This mechanism of aneuploidy bypasses the known spindle assembly checkpoint that monitors chromosome segregation.


Asunto(s)
Aneuploidia , Inestabilidad Cromosómica , Cromosomas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Polos del Huso/metabolismo , Segregación Cromosómica , Schizosaccharomyces , Huso Acromático
7.
Mol Biol Cell ; 25(18): 2750-60, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25057016

RESUMEN

Accurate chromosome segregation requires timely bipolar spindle formation during mitosis. The transforming acidic coiled-coil (TACC) family proteins and the ch-TOG family proteins are key players in bipolar spindle formation. They form a complex to stabilize spindle microtubules, mainly dependent on their localization to the centrosome (the spindle pole body [SPB] in yeast). The molecular mechanism underlying the targeting of the TACC-ch-TOG complex to the centrosome remains unclear. Here we show that the fission yeast Schizosaccharomyces pombe TACC orthologue alp7p is recruited to the SPB by csi1p. The csi1p-interacting region lies within the conserved TACC domain of alp7p, and the carboxyl-terminal domain of csi1p is responsible for interacting with alp7p. Compromised interaction between csi1p and alp7p impairs the localization of alp7p to the SPB during mitosis, thus delaying bipolar spindle formation and leading to anaphase B lagging chromosomes. Hence our study establishes that csi1p serves as a linking molecule tethering spindle-stabilizing factors to the SPB for promoting bipolar spindle assembly.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Huso Acromático/metabolismo , Segregación Cromosómica , Cromosomas Fúngicos/metabolismo , Mitosis , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Schizosaccharomyces/citología
8.
FEBS Lett ; 588(6): 859-65, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24530531

RESUMEN

Microtubule plus ends are dynamically regulated by a wide variety of proteins for performing diverse cellular functions. Here, we show that the fission yeast Schizosaccharomyces pombe uncharacterized protein mcp1p is a microtubule plus-end tracking protein which depends on the kinesin-8 klp6p for transporting along microtubules towards microtubule plus ends. In the absence of mcp1p, microtubule catastrophe and rescue frequencies decrease, leading to an increased dwell time of microtubule plus ends at cell tips. Thus, these findings suggest that mcp1p may synergize with klp6p at microtubule plus-ends to destabilize microtubules.


Asunto(s)
Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cinesinas/metabolismo , Microscopía Fluorescente , Estabilidad Proteica , Transporte de Proteínas , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/metabolismo , Imagen de Lapso de Tiempo
9.
Curr Biol ; 23(23): 2423-9, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24239120

RESUMEN

Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at characteristic constant length [1-3]. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules (MTs) and their interactions with motors and MT-associated proteins (MAPs). Spindle length is further proposed to be important for chromosome segregation fidelity, as cells with shorter- or longer-than-normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force-balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature control with live-cell imaging to monitor the effect of deleting or switching off different combinations of antagonistic force contributors in the fission yeast metaphase spindle. We show that the spindle midzone proteins kinesin-5 cut7p and MT bundler ase1p contribute to outward-pushing forces and that the spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward-pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and in some combinations also partially rescued chromosome segregation defects.


Asunto(s)
Segregación Cromosómica/genética , Cinesinas/genética , Schizosaccharomyces/genética , Huso Acromático/genética , Ciclina B/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Mitosis/genética , Proteínas de Schizosaccharomyces pombe/genética
10.
Methods Cell Biol ; 115: 385-94, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23973085

RESUMEN

Microtubules exhibit dynamic instability, stochastically switching between infrequent phases of growth and shrinkage. In the cell, microtubule dynamic instability is further modulated by microtubule-associated proteins and motors, which are specifically tuned to cell cycle stages. For example, mitotic microtubules are more dynamic than interphase microtubules. The different parameters of microtubule dynamics can be measured from length versus time data, which are generally obtained from time-lapse acquisition using the optical microscope. The typical maximum resolution of the optical microscope is ~λ/2 or ~300 nm. This scale represents a challenge for imaging fission yeast microtubule dynamics specifically during early mitosis, where the bipolar mitotic spindle contains many short dynamic microtubules of ~1-µm scale. Here, we present a novel method to image short fission yeast mitotic microtubules. The method uses the thermosensitive reversible kinesin-5 cut7.24(ts) to create monopolar spindles, where asters of individual mitotic microtubules are presented for imaging and subsequent analysis.


Asunto(s)
Microscopía Fluorescente/métodos , Microtúbulos/metabolismo , Schizosaccharomyces/metabolismo , Huso Acromático/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Schizosaccharomyces/genética
11.
J Biol Chem ; 281(48): 37111-6, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16990268

RESUMEN

We report the cloning and characterization of DANGER, a novel protein which physiologically binds to inositol 1,4,5-trisphosphate receptors (IP(3)R). DANGER is a membrane-associated protein predicted to contain a partial MAB-21 domain. It is expressed in a wide variety of neuronal cell lineages where it localizes to membranes in the cell periphery together with IP(3)R. DANGER interacts with IP(3)R in vitro and co-immunoprecipitates with IP(3)R from cellular preparations. DANGER robustly enhances Ca(2+)-mediated inhibition of IP(3) RCa(2+) release without affecting IP(3) binding in microsomal assays and inhibits gating in single-channel recordings of IP(3)R. DANGER appears to allosterically modulate the sensitivity of IP(3) RtoCa(2+) inhibition, which likely alters IP(3)R-mediated Ca(2+) dynamics in cells where DANGER and IP(3)R are co-expressed.


Asunto(s)
Regulación de la Expresión Génica , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de la Membrana/fisiología , Neuronas/metabolismo , Sitio Alostérico , Animales , Calcio/metabolismo , Clonación Molecular , Electrofisiología , Humanos , Insectos , Proteínas de la Membrana/química , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Tripsina/farmacología , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...