Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37765465

RESUMEN

Maize yield forecasting is important for the organisation of harvesting and storage, for the estimation of the commodity base and for the provision of the country's feed and food demand (export-import). To this end, a field experiment was conducted in dry (2021) and extreme dry (2022) years to track the development of the crop to determine the evolution of the relative chlorophyll content (SPAD) and leaf area index (LAI) for better yield estimation. The obtained results showed that SPAD and LAI decreased significantly under drought stress, and leaf senescence had already started in the early vegetative stage. The amount of top dressing applied at V6 and V12 phenophases did not increase yield due to the low amount of rainfall. The 120 kg N ha-1 base fertiliser proved to be optimal. The suitability of SPAD and LAI for maize yield estimation was modelled by regression analysis. Results showed that the combined SPAD-LAI was suitable for yield prediction, and the correlation was strongest at the VT stage (R2 = 0.762).

2.
Plants (Basel) ; 12(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299133

RESUMEN

Water scarcity is a major obstacle to forage crop production in arid and semi-arid regions. In order to improve food security in these areas, it is imperative to employ suitable irrigation management techniques and identify drought-tolerant cultivars. A 2-year field experiment (2019-2020) was conducted in a semi-arid region of Iran to assess the impact of different irrigation methods and water deficit stress on forage sorghum cultivars' yield, quality, and irrigation water-use efficiency (IWUE). The experiment involved two irrigation methods, i.e., drip (DRIP) and furrow (FURW), and three irrigation regimes supplied 100% (I100), 75% (I75), and 50% (I50) of the soil moisture deficit. In addition, two forage sorghum cultivars (hybrid Speedfeed and open-pollinated cultivar Pegah) were evaluated. This study revealed that the highest dry matter yield (27.24 Mg ha-1) was obtained under I100 × DRIP, whereas the maximum relative feed value (98.63%) was achieved under I50 × FURW. Using DRIP resulted in higher forage yield and IWUE compared to FURW, and the superiority of DRIP over FURW increased with the severity of the water deficit. The principal component analysis indicated that, as drought stress severity increased across all irrigation methods and cultivars, forage yield decreased, while quality increased. Plant height and leaf-to-stem ratio were found to be suitable indicators for comparing forage yield and quality, respectively, and they showed a negative correlation between the quality and quantity of forage. DRIP improved forage quality under I100 and I75, while FURW exhibited a better feed value under the I50 regime. Altogether, in order to achieve the best possible forage yield and quality while minimizing water usage, it is recommended to grow the Pegah cultivar and compensate for 75% of soil moisture deficiency using drip irrigation.

3.
J Fungi (Basel) ; 8(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36294550

RESUMEN

As the recent outbreak of coronavirus disease 2019 (COVID-19) has shown, viral infections are prone to secondary complications like invasive aspergillosis with a high mortality rate, and therefore the development of novel, effective antifungals is of paramount importance. We have previously demonstrated that 1-amino-5-isocyanonaphthalene (ICAN) derivatives are promising original drug candidates against Candida strains (Patent pending), even against fluconazole resistant C. albicans. Consequently, in this study ICANs were tested on Aspergillus fumigatus, an opportunistic pathogen, which is the leading cause of invasive and systematic pulmonary aspergillosis in immunosuppressed, transplanted and cancer- or COVID-19 treated patients. We have tested several N-alkylated ICANs, a well as 1,5-naphthalene-diisocyanide (DIN) with the microdilution method against Aspergillus fumigatus strains. The results revealed that the diisocyanide (DIN) was the most effective with a minimum inhibitory concentration (MIC) value as low as 0.6 µg mL-1 (3.4 µM); however, its practical applicability is limited by its poor water solubility, which needs to be overcome by proper formulation. The other alkylated derivatives also have in vitro and in vivo anti-Aspergillus fumigatus effects. For animal experiments the second most effective derivative 1-N, N-dimethylamino-5-isocyanonaphthalene (DIMICAN, MIC: 7-8 µg mL-1, 36-41 µM) was selected, toxicity tests were made with mice, and then the antifungal effect of DIMICAN was tested in a neutropenic aspergillosis murine model. Compared to amphotericin B (AMB), a well-known antifungal, the antifungal effect of DIMICAN in vivo turned out to be much better (40% vs. 90% survival after eight days), indicating its potential as a clinical drug candidate.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36078383

RESUMEN

The Modified Fournier Index (MFI) is one of the indices that can assess the erosivity of rainfall. However, the implementation of the artificial neural network (ANN) for the prediction of the MFI is still rare. In this research, climate data (monthly and yearly precipitation (pi, Ptotal) (mm), daily maximum precipitation (Pd-max) (mm), monthly mean temperature (Tavg) (°C), daily maximum mean temperature (Td-max) (°C), and daily minimum mean temperature (Td-min) (°C)) were collected from three stations in Hungary (Budapest, Debrecen, and Pécs) between 1901 and 2020. The MFI was calculated, and then, the performance of two ANNs (multilayer perceptron (MLP) and radial basis function (RBF)) in predicting the MFI was evaluated under four scenarios. The average MFI values were between 66.30 ± 15.40 (low erosivity) in Debrecen and 75.39 ± 15.39 (low erosivity) in Pecs. The prediction of the MFI by using MLP was good (NSEBudapest(SC3) = 0.71, NSEPécs(SC2) = 0.69). Additionally, the performance of RBF was accurate (NSEDebrecen(SC4) = 0.68, NSEPécs(SC3) = 0.73). However, the correlation coefficient between the observed MFI and the predicted one ranged between 0.83 (Budapest (SC2-MLP)) and 0.86 (Pécs (SC3-RBF)). Interestingly, the statistical analyses promoted SC2 (Pd-max + pi + Ptotal) and SC4 (Ptotal + Tavg + Td-max + Td-min) as the best scenarios for predicting MFI by using the ANN-MLP and ANN-RBF, respectively. However, the sensitivity analysis highlighted that Ptotal, pi, and Td-min had the highest relative importance in the prediction process. The output of this research promoted the ANN (MLP and RBF) as an effective tool for predicting rainfall erosivity in Central Europe.


Asunto(s)
Redes Neurales de la Computación , Europa (Continente) , Hungría , Temperatura
5.
Plants (Basel) ; 11(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35736744

RESUMEN

Maize is one of the most widely used plants in the agricultural industry, and the fields of application of this plant are broad. The experiment was conducted at the Látókép Crop Production Experimental Station of the University of Debrecen, Hungary. Three mid-ripening maize hybrids with different FAO numbers were used in the present study. The effects of different nitrogen supplies were examined as a variable rate of abiotic stress and the interrelationship among the essential nutrients through the nutrient acquisition and partitioning of the different vegetative and generative plant parts. The results showed that NPK application compared to the control treatment (no fertilizer application) increased DM in all tissues of maize, while increasing nitrogen application from 120 to 300 kg ha-1 had no significant effect on this trait. The highest protein content was obtained with the nitrogen application of 120 kg ha-1, and the higher nitrogen fertilizer application had no significant effect on this trait. Seeds and leaves had a maximum zinc and manganese value in terms of nitrogen content (protein). Dry matter was positively correlated with nitrogen, potassium, and manganese content, while the dry matter had a negative correlation with nickel content. In general, to achieve a maximum quantitative and qualitative yield, it is recommended to use NPK fertilizer with a rate of 120 kg ha-1 N for maize cultivation.

6.
Sci Rep ; 12(1): 8838, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614172

RESUMEN

This study examined the physical properties of agricultural drought (i.e., intensity, duration, and severity) in Hungary from 1961 to 2010 based on the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). The study analyzed the interaction between drought and crop yield for maize and wheat using standardized yield residual series (SYRS), and the crop-drought resilient factor (CDRF). The results of both SPI and SPEI (-3, -6) showed that the western part of Hungary has significantly more prone to agricultural drought than the eastern part of the country. Drought frequency analysis reveals that the eastern, northern, and central parts of Hungary were the most affected regions. Drought analysis also showed that drought was particularly severe in Hungary during 1970-1973, 1990-1995, 2000-2003, and 2007. The yield of maize was more adversely affected than wheat especially in the western and southern regions of Hungary (1961-2010). In general, maize and wheat yields were severely non-resilient (CDRF < 0.8) in the central and western part of the country. The results suggest that drought events are a threat to the attainment of the second Sustainable Development Goals (SDG-2). Therefore, to ensure food security in Hungary and in other parts of the world, drought resistant crop varieties need to be developed to mitigate the adverse effects of climate change on agricultural production.


Asunto(s)
Sequías , Triticum , Agricultura , Hungría , Zea mays
7.
Plants (Basel) ; 10(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34834792

RESUMEN

Nutrient stress has been known as the main limiting factor for maize growth and yield. Nitrapyrin, as a nitrification inhibitor-which reduces nitrogen loss-and foliar fertilizer treatments have been successfully used to enhance the efficiency of nutrient utilization, however, the impacts of these two technologies on physiological development, enzymatic responses, and productivity of maize are poorly studied. In this paper, the concentration of each stress indicator, such as contents of proline, malondialdehyde (MDA), relative chlorophyll, photosynthetic pigments, and the activity of superoxide dismutase (SOD) were measured in maize leaf tissues. In addition, biomass growth, as well as quantitative and qualitative parameters of yield production were examined. Results confirm the enhancing impact of nitrapyrin on the nitrogen use of maize. Furthermore, lower activity of proline, MDA, SOD, as well as higher photosynthetic activity were shown in maize with a more favorable nutrient supply due to nitrapyrin and foliar fertilizer treatments. The obtained findings draw attention to the future practical relevance of these technologies that can be implemented to enhance the physiological development and productivity of maize. However, this paper also highlights the importance of irrigation, as nutrient uptake from soil by the crops decreases during periods of drought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA