Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Physiol ; 14: 1223347, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614753

RESUMEN

Introduction: A severe course of COVID-19 is characterized by a hyperinflammatory state resulting in acute respiratory distress syndrome or even multi-organ failure along a derailed sympatho-vagal balance. Methods: In this prospective, randomized study, we evaluate the hypothesis that percutaneous minimally invasive auricular vagus nerve stimulation (aVNS) is a safe procedure and might reduce the rate of clinical complications in patients with severe course of COVID-19. In our study, patients with SARS-CoV-2 infection admitted to the intensive care unit with moderate-to-severe acute respiratory distress syndrome, however without invasive ventilation yet, were included and following randomization assigned to a group receiving aVNS four times per 24 h for 3 h and a group receiving standard of care (SOC). Results: A total of 12 patients were included (six in the aVNS and six in the SOC group). No side effects in aVNS were reported, especially no significant pain at device placement or during stimulation at the stimulation site or significant headache or bleeding after or during device placement or lasting skin irritation. There was no significant difference in the aVNS and SOC groups between the length of stay in the intensive care unit and at the hospital, bradycardia, delirium, or 90-day mortality. In the SOC group, five of six patients required invasive mechanical ventilation during their stay at hospital and 60% of them venovenous extracorporeal membrane oxygenation, compared to three of six patients and 0% in the aVNS group (p = 0.545 and p = 0.061). Discussion: Vagus nerve stimulation in patients with severe COVID-19 is a safe and feasible method. Our data showed a trend to a reduction of progression to the need of invasive ventilation and venovenous extracorporeal membrane oxygenation which encourages further research with larger patient samples.

4.
Front Physiol ; 13: 897257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860660

RESUMEN

Covid-19 is an infectious disease associated with cytokine storms and derailed sympatho-vagal balance leading to respiratory distress, hypoxemia and cardiovascular damage. We applied the auricular vagus nerve stimulation to modulate the parasympathetic nervous system, activate the associated anti-inflammatory pathways, and reestablish the abnormal sympatho-vagal balance. aVNS is performed percutaneously using miniature needle electrodes in ear regions innervated by the auricular vagus nerve. In terms of a randomized prospective study, chronic aVNS is started in critical, but not yet ventilated Covid-19 patients during their stay at the intensive care unit. The results show decreased pro-inflammatory parameters, e.g. a reduction of CRP levels by 32% after 1 day of aVNS and 80% over 7 days (from the mean 151.9 mg/dl to 31.5 mg/dl) or similarly a reduction of TNFalpha levels by 58.1% over 7 days (from a mean 19.3 pg/ml to 8.1 pg/ml) and coagulation parameters, e.g. reduction of DDIMER levels by 66% over 7 days (from a mean 4.5 µg/ml to 1.5 µg/ml) and increased anti-inflammatory parameters, e.g. an increase of IL-10 levels by 66% over 7 days (from the mean 2.7 pg/ml to 7 pg/ml) over the aVNS duration without collateral effects. aVNS proved to be a safe clinical procedure and could effectively supplement treatment of critical Covid-19 patients while preventing devastating over-inflammation.

5.
Front Physiol ; 13: 1000194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714322

RESUMEN

Introduction: SARS-CoV-2 is a highly contagious virus that was identified as the cause of COVID-19 disease in early 2020. The infection is clinically similar to interstitial pneumonia and acute respiratory distress syndrome (ARDS) and often shows cardiovascular damage. Patients with cardiovascular risk factors are more prone to COVID-19 disease and their sequelae. Due to the anti-inflammatory effect and the improvement in pulmonary function, auricular vagus nerve stimulation (aVNS) therapy might alleviate a COVID-19 infection. Patient and Methods: A high-risk patient with cardiovascular diseases and Implantable Cardioverter Defibrillator (ICD), type 2 diabetes and peripheral arterial disease IV, according to Rutherford`s classification, became infected with COVID-19. The patient underwent wound surgery because of an infected necrosis with a methicillin-resistant Staphylococcus aureus (MRSA) of his small toe and was already on aVNS therapy to relieve his leg pain and improve microcirculation. AVNS was performed with the AuriStim device (Multisana GmbH, Austria), which stimulates vagally innervated regions of the auricle by administering electrical stimulation via percutaneous electrodes for 6 weeks. Results: The multimorbid high-risk patient, who was expected to go through a severe course of the COVID-19 disease, showed hardly any symptoms during ongoing aVNS therapy, while other family members, being much younger and healthy suffered from a more serious course with headache, pneumonia and general weakness. Conclusion: The auricular vagus nerve stimulation is a clinically tested and safe procedure and might represent an alternative and effective way of treating COVID-19 disease. Nevertheless, due to several limitations of this case report, randomized controlled studies are needed to evaluate the efficacy of aVNS therapy on COVID-19 disease.

6.
Front Neuroanat ; 14: 22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477074

RESUMEN

Therapeutic applications of auricular vagus nerve stimulation (VNS) have drawn recent attention. Since the targeted stimulation process and parameters depend on the electrode-tissue interaction, the lack of structural anatomical information on innervation and vascularization of the auricle restrain the current optimization of stimulation paradigms. For the first time, we employed high-resolution episcopic imaging (HREM) to generate histologic volume data from donated human cadaver ears. Optimal parameters for specimen preparation were evaluated. Anatomical 3D vascular and nerve structures were reconstructed in one sample of an auricular cymba conchae (CC). The feasibility of HREM to visualize anatomical structures was assessed in that diameters, occupied areas, volumes, and mutual distances between auricular arteries, nerves, and veins were registered. The selected region of CC (3 × 5.5 mm) showed in its cross-sections 21.7 ± 2.7 (mean ± standard deviation) arteries and 14.66 ± 2.74 nerve fibers. Identified nerve diameters were 33.66 ± 21.71 µm, and arteries had diameters in the range of 71.58 ± 80.70 µm. The respective occupied area showed a share of, on average, 2.71% and 0.3% for arteries and nerves, respectively, and similar volume occupancy for arteries and nerves. Inter-centroid minimum distance between arteries and nerves was 274 ± 222 µm. The density of vessels and nerves around a point within CC on a given grid was assessed, showing that 50% of all vessels and nerves were found in a radial distance of 1.6-1.8 mm from any of these points, which is strategically relevant when using stimulation needles in the auricle for excitation of nerves. HREM seems suitable for anatomical studies of the human ear. A 3D model of CC was established in the micrometer scale, which forms the basis for future optimization of the auricular VNS. Obviously, the presented single cadaver study needs to be validated by additional anatomical data on the innervation and vascularization of the auricle.

7.
IEEE Trans Biomed Eng ; 67(7): 1921-1935, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31675313

RESUMEN

OBJECTIVE: Percutaneous electrical stimulation of the auricular vagus nerve (pVNS) is an electroceutical technology. The selection of stimulation patterns is empirical, which may lead to under-stimulation or over-stimulation. The objective is to assess the efficiency of different stimulation patterns with respect to individual perception and to compare it with numerical data based on in-silico ear models. METHODS: Monophasic (MS), biphasic (BS) and triphasic stimulation (TS) patterns were tested in volunteers. Different clinically-relevant perception levels were assessed. In-silico models of the human ear were created with embedded fibers and vessels to assess different excitation levels. RESULTS: TS indicates experimental superiority over BS which is superior to MS while reaching different perception levels. TS requires about 57% and 35% of BS and MS magnitude, respectively, to reach the comfortable perception. Experimental thresholds decrease from non-bursted to bursted stimulation. Numerical results indicate a slight superiority of BS and TS over MS while reaching different excitation levels, whereas the burst length has no influence. TS yields the highest number of asynchronous action impulses per stimulation symbol for the used tripolar electrode set-up. CONCLUSION: The comparison of experimental and numerical data favors the novel TS pattern. The analysis separates excitatory pVNS effects in the auricular periphery, as accounted by in-silico data, from the combination of peripheral and central pVNS effects in the brain, as accounted by experimental data. SIGNIFICANCE: The proposed approach moves from an empirical selection of stimulation patterns towards efficient and optimized pVNS settings.


Asunto(s)
Estimulación del Nervio Vago , Encéfalo , Estimulación Eléctrica , Electrodos , Humanos , Nervio Vago
8.
Front Neurosci ; 13: 772, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396044

RESUMEN

Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging electroceutical technology in the field of bioelectronic medicine with applications in therapy. Artificial modulation of the afferent vagus nerve - a powerful entrance to the brain - affects a large number of physiological processes implicating interactions between the brain and body. Engineering aspects of aVNS determine its efficiency in application. The relevant safety and regulatory issues need to be appropriately addressed. In particular, in silico modeling acts as a tool for aVNS optimization. The evolution of personalized electroceuticals using novel architectures of the closed-loop aVNS paradigms with biofeedback can be expected to optimally meet therapy needs. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the scope of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on engineering aspects - a discussion of physiological aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.

9.
Front Neurosci ; 13: 854, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31447643

RESUMEN

Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging technology in the field of bioelectronic medicine with applications in therapy. Modulation of the afferent vagus nerve affects a large number of physiological processes and bodily states associated with information transfer between the brain and body. These include disease mitigating effects and sustainable therapeutic applications ranging from chronic pain diseases, neurodegenerative and metabolic ailments to inflammatory and cardiovascular diseases. Given the current evidence from experimental research in animal and clinical studies we discuss basic aVNS mechanisms and their potential clinical effects. Collectively, we provide a focused review on the physiological role of the vagus nerve and formulate a biology-driven rationale for aVNS. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the framework of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on physiological aspects - a discussion of engineering aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...