Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(4-1): 044407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38755817

RESUMEN

All the cells of a multicellular organism are the product of cell divisions that trace out a single binary tree, the so-called cell lineage tree. Because cell divisions are accompanied by replication errors, the shape of the cell lineage tree is a key determinant of how somatic evolution, which can potentially lead to cancer, proceeds. Carcinogenesis requires the accumulation of a certain number of driver mutations. By mapping the accumulation of mutations into a graph theoretical problem, we present an exact numerical method to calculate the probability of collecting a given number of mutations and show that for low mutation rates it can be approximated with a simple analytical formula, which depends only on the distribution of the lineage lengths, and is dominated by the longest lineages. Our results are crucial in understanding how natural selection can shape the cell lineage trees of multicellular organisms and curtail somatic evolution.


Asunto(s)
Linaje de la Célula , Modelos Genéticos , Acumulación de Mutaciones , Mutación
2.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38514421

RESUMEN

MOTIVATION: Genomes are a rich source of information on the pattern and process of evolution across biological scales. How best to make use of that information is an active area of research in phylogenetics. Ideally, phylogenetic methods should not only model substitutions along gene trees, which explain differences between homologous gene sequences, but also the processes that generate the gene trees themselves along a shared species tree. To conduct accurate inferences, one needs to account for uncertainty at both levels, that is, in gene trees estimated from inherently short sequences and in their diverse evolutionary histories along a shared species tree. RESULTS: We present AleRax, a software that can infer reconciled gene trees together with a shared species tree using a simple, yet powerful, probabilistic model of gene duplication, transfer, and loss. A key feature of AleRax is its ability to account for uncertainty in the gene tree and its reconciliation by using an efficient approximation to calculate the joint phylogenetic-reconciliation likelihood and sample reconciled gene trees accordingly. Simulations and analyses of empirical data show that AleRax is one order of magnitude faster than competing gene tree inference tools while attaining the same accuracy. It is consistently more robust than species tree inference methods such as SpeciesRax and ASTRAL-Pro 2 under gene tree uncertainty. Finally, AleRax can process multiple gene families in parallel thereby allowing users to compare competing phylogenetic hypotheses and estimate model parameters, such as duplication, transfer, and loss probabilities for genome-scale datasets with hundreds of taxa. AVAILABILITY AND IMPLEMENTATION: GNU GPL at https://github.com/BenoitMorel/AleRax and data are made available at https://cme.h-its.org/exelixis/material/alerax_data.tar.gz.


Asunto(s)
Algoritmos , Duplicación de Gen , Filogenia , Programas Informáticos , Modelos Estadísticos , Evolución Molecular
3.
Nat Commun ; 14(1): 7456, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978174

RESUMEN

The timing of early cellular evolution, from the divergence of Archaea and Bacteria to the origin of eukaryotes, is poorly constrained. The ATP synthase complex is thought to have originated prior to the Last Universal Common Ancestor (LUCA) and analyses of ATP synthase genes, together with ribosomes, have played a key role in inferring and rooting the tree of life. We reconstruct the evolutionary history of ATP synthases using an expanded taxon sampling set and develop a phylogenetic cross-bracing approach, constraining equivalent speciation nodes to be contemporaneous, based on the phylogenetic imprint of endosymbioses and ancient gene duplications. This approach results in a highly resolved, dated species tree and establishes an absolute timeline for ATP synthase evolution. Our analyses show that the divergence of ATP synthase into F- and A/V-type lineages was a very early event in cellular evolution dating back to more than 4 Ga, potentially predating the diversification of Archaea and Bacteria. Our cross-braced, dated tree of life also provides insight into more recent evolutionary transitions including eukaryogenesis, showing that the eukaryotic nuclear and mitochondrial lineages diverged from their closest archaeal (2.67-2.19 Ga) and bacterial (2.58-2.12 Ga) relatives at approximately the same time, with a slightly longer nuclear stem-lineage.


Asunto(s)
Archaea , Bacterias , Filogenia , Bacterias/genética , Archaea/genética , Mitocondrias/genética , Adenosina Trifosfato , Evolución Molecular , Eucariontes/genética , Evolución Biológica
4.
Genome Biol Evol ; 15(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37463417

RESUMEN

ALE and GeneRax are tools for probabilistic gene tree-species tree reconciliation. Based on a common underlying statistical model of how gene trees evolve along species trees, these methods rely on gene vs. species tree discordance to infer gene duplication, transfer, and loss events, map gene family origins, and root species trees. Published analyses have used these methods to root species trees of Archaea, Bacteria, and several eukaryotic groups, as well as to infer ancestral gene repertoires. However, it was recently suggested that reconciliation-based estimates of duplication and transfer events using the ALE/GeneRax model were unreliable, with potential implications for species tree rooting. Here, we assess these criticisms and find that the methods are accurate when applied to simulated data and in generally good agreement with alternative methodological approaches on empirical data. In particular, ALE recovers variation in gene duplication and transfer frequencies across lineages that is consistent with the known biology of studied clades. In plants and opisthokonts, ALE recovers the consensus species tree root; in Bacteria-where there is less certainty about the root position-ALE agrees with alternative approaches on the most likely root region. Overall, ALE and related approaches are promising tools for studying genome evolution.


Asunto(s)
Algoritmos , Evolución Molecular , Filogenia , Duplicación de Gen , Bacterias/genética , Eucariontes , Modelos Genéticos
5.
Sci Rep ; 13(1): 5411, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012292

RESUMEN

Almost all cancer types share the hallmarks of cancer and a similar tumor formation: fueled by stochastic mutations in somatic cells. In case of chronic myeloid leukemia (CML), this evolutionary process can be tracked from an asymptomatic long-lasting chronic phase to a final rapidly evolving blast phase. Somatic evolution in CML occurs in the context of healthy blood production, a hierarchical process of cell division; initiated by stem cells that self-renew and differentiate to produce mature blood cells. Here we introduce a general model of hierarchical cell division explaining the particular progression of CML as resulting from the structure of the hematopoietic system. Driver mutations confer a growth advantage to the cells carrying them, for instance, the BCR::ABL1 gene, which also acts as a marker for CML. We investigated the relation of the BCR::ABL1 mutation strength to the hematopoietic stem cell division rate by employing computer simulations and fitting the model parameters to the reported median duration for the chronic and accelerated phases. Our results demonstrate that driver mutations (additional to the BCR::ABL1 mutation) are necessary to explain CML progression if stem cells divide sufficiently slowly. We observed that the number of mutations accumulated by cells at the more differentiated levels of the hierarchy is not affected by driver mutations present in the stem cells. Our results shed light on somatic evolution in a hierarchical tissue and show that the clinical hallmarks of CML progression result from the structural characteristics of blood production.


Asunto(s)
Sistema Hematopoyético , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Proteínas de Fusión bcr-abl/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Crisis Blástica/patología , Mutación , Sistema Hematopoyético/patología , Inhibidores de Proteínas Quinasas
6.
Syst Biol ; 72(4): 767-780, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-36946562

RESUMEN

Accurate phylogenies are fundamental to our understanding of the pattern and process of evolution. Yet, phylogenies at deep evolutionary timescales, with correspondingly long branches, have been fraught with controversy resulting from conflicting estimates from models with varying complexity and goodness of fit. Analyses of historical as well as current empirical datasets, such as alignments including Microsporidia, Nematoda, or Platyhelminthes, have demonstrated that inadequate modeling of across-site compositional heterogeneity, which is the result of biochemical constraints that lead to varying patterns of accepted amino acids along sequences, can lead to erroneous topologies that are strongly supported. Unfortunately, models that adequately account for across-site compositional heterogeneity remain computationally challenging or intractable for an increasing fraction of contemporary datasets. Here, we introduce "compositional constraint analysis," a method to investigate the effect of site-specific constraints on amino acid composition on phylogenetic inference. We show that more constrained sites with lower diversity and less constrained sites with higher diversity exhibit ostensibly conflicting signals under models ignoring across-site compositional heterogeneity that lead to long-branch attraction artifacts and demonstrate that more complex models accounting for across-site compositional heterogeneity can ameliorate this bias. We present CAT-posterior mean site frequencies (PMSF), a pipeline for diagnosing and resolving phylogenetic bias resulting from inadequate modeling of across-site compositional heterogeneity based on the CAT model. CAT-PMSF is robust against long-branch attraction in all alignments we have examined. We suggest using CAT-PMSF when convergence of the CAT model cannot be assured. We find evidence that compositionally constrained sites are driving long-branch attraction in two metazoan datasets and recover evidence for Porifera as the sister group to all other animals. [Animal phylogeny; cross-site heterogeneity; long-branch attraction; phylogenomics.].


Asunto(s)
Microsporidios , Animales , Filogenia , Sesgo , Modelos Genéticos
7.
Syst Biol ; 72(3): 723-737, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35713492

RESUMEN

Common molecular phylogenetic characteristics such as long branches and compositional heterogeneity can be problematic for phylogenetic reconstruction when using amino acid data. Recoding alignments to reduced alphabets before phylogenetic analysis has often been used both to explore and potentially decrease the effect of such problems. We tested the effectiveness of this strategy on topological accuracy using simulated data on four-taxon trees. We simulated alignments in phylogenetically challenging ways to test the phylogenetic accuracy of analyses using various recoding strategies together with commonly used homogeneous models. We tested three recoding methods based on amino acid exchangeability, and another recoding method based on lowering the compositional heterogeneity among alignment sequences as measured by the Chi-squared statistic. Our simulation results show that on trees with long branches where sequences approach saturation, accuracy was not greatly affected by exchangeability-based recodings, but Chi-squared-based recoding decreased accuracy. We then simulated sequences with different kinds of compositional heterogeneity over the tree. Recoding often increased accuracy on such alignments. Exchangeability-based recoding was rarely worse than not recoding, and often considerably better. Recoding based on lowering the Chi-squared value improved accuracy in some cases but not in others, suggesting that low compositional heterogeneity by itself is not sufficient to increase accuracy in the analysis of these alignments. We also simulated alignments using site-specific amino acid profiles, making sequences that had compositional heterogeneity over alignment sites. Exchangeability-based recoding coupled with site-homogeneous models had poor accuracy for these data sets but Chi-squared-based recoding on these alignments increased accuracy. We then simulated data sets that were compositionally both site- and tree-heterogeneous, like many real data sets. The effect on the accuracy of recoding such doubly problematic data sets varied widely, depending on the type of compositional tree heterogeneity and on the recoding scheme. Interestingly, analysis of unrecoded compositionally heterogeneous alignments with the NDCH or CAT models was generally more accurate than homogeneous analysis, whether recoded or not. Overall, our results suggest that making trees for recoded amino acid data sets can be useful, but they need to be interpreted cautiously as part of a more comprehensive analysis. The use of better-fitting models like NDCH and CAT, which directly account for the patterns in the data, may offer a more promising long-term solution for analyzing empirical data. [Compositional heterogeneity; models of evolution; phylogenetic methods; recoding amino acid data sets.].


Asunto(s)
Aminoácidos , Filogenia , Simulación por Computador
8.
Methods Mol Biol ; 2569: 75-94, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36083444

RESUMEN

Many organisms are able to incorporate exogenous DNA into their genomes. This process, called lateral gene transfer (LGT), has the potential to benefit the recipient organism by providing useful coding sequences, such as antibiotic resistance genes or enzymes which expand the organism's metabolic niche. For evolutionary biologists, LGTs have often been considered a nuisance because they complicate the reconstruction of the underlying species tree that many analyses aim to recover. However, LGT events between distinct organisms harbor information on the relative divergence time of the donor and recipient lineages. As a result transfers provide a novel and as yet mostly unexplored source of information to determine the order of divergence of clades, with the potential for absolute dating if linked to the fossil record.


Asunto(s)
Evolución Biológica , Transferencia de Gen Horizontal , Evolución Molecular , Genoma , Filogenia
9.
Methods Mol Biol ; 2569: 189-211, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36083449

RESUMEN

Interpreting phylogenetic trees requires a root, which provides the direction of evolution and polarizes ancestor-descendant relationships. But inferring the root using genetic data is difficult, particularly in cases where the closest available outgroup is only distantly related, which are common for microbes. In this chapter, we present a workflow for estimating rooted species trees and the evolutionary history of the gene families that evolve within them using probabilistic gene tree-species tree reconciliation. We illustrate the pipeline using a small dataset of prokaryotic genomes, for which the example scripts can be run using modest computer resources. We describe the rooting method used in this work in the context or other rooting strategies and discuss some of the limitations and opportunities presented by probabilistic gene tree-species tree reconciliation methods.


Asunto(s)
Algoritmos , Genoma , Evolución Molecular , Modelos Genéticos , Filogenia , Células Procariotas
10.
Nat Ecol Evol ; 6(11): 1634-1643, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36175544

RESUMEN

The origin of plants and their colonization of land fundamentally transformed the terrestrial environment. Here we elucidate the basis of this formative episode in Earth history through patterns of lineage, gene and genome evolution. We use new fossil calibrations, a relative clade age calibration (informed by horizontal gene transfer) and new phylogenomic methods for mapping gene family origins. Distinct rooting strategies resolve tracheophytes (vascular plants) and bryophytes (non-vascular plants) as monophyletic sister groups that diverged during the Cambrian, 515-494 million years ago. The embryophyte stem is characterized by a burst of gene innovation, while bryophytes subsequently experienced an equally dramatic episode of reductive genome evolution in which they lost genes associated with the elaboration of vasculature and the stomatal complex. Overall, our analyses reveal that extant tracheophytes and bryophytes are both highly derived from a more complex ancestral land plant. Understanding the origin of land plants requires tracing character evolution across a diversity of modern lineages.


Asunto(s)
Embryophyta , Tracheophyta , Evolución Biológica , Embryophyta/genética , Filogenia , Plantas/genética , Fósiles
11.
Nature ; 609(7928): 747-753, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36002568

RESUMEN

Animals and fungi have radically distinct morphologies, yet both evolved within the same eukaryotic supergroup: Opisthokonta1,2. Here we reconstructed the trajectory of genetic changes that accompanied the origin of Metazoa and Fungi since the divergence of Opisthokonta with a dataset that includes four novel genomes from crucial positions in the Opisthokonta phylogeny. We show that animals arose only after the accumulation of genes functionally important for their multicellularity, a tendency that began in the pre-metazoan ancestors and later accelerated in the metazoan root. By contrast, the pre-fungal ancestors experienced net losses of most functional categories, including those gained in the path to Metazoa. On a broad-scale functional level, fungal genomes contain a higher proportion of metabolic genes and diverged less from the last common ancestor of Opisthokonta than did the gene repertoires of Metazoa. Metazoa and Fungi also show differences regarding gene gain mechanisms. Gene fusions are more prevalent in Metazoa, whereas a larger fraction of gene gains were detected as horizontal gene transfers in Fungi and protists, in agreement with the long-standing idea that transfers would be less relevant in Metazoa due to germline isolation3-5. Together, our results indicate that animals and fungi evolved under two contrasting trajectories of genetic change that predated the origin of both groups. The gradual establishment of two clearly differentiated genomic contexts thus set the stage for the emergence of Metazoa and Fungi.


Asunto(s)
Evolución Molecular , Hongos , Genoma , Genómica , Filogenia , Animales , Hongos/genética , Transferencia de Gen Horizontal , Genes , Genoma/genética , Genoma Fúngico/genética , Metabolismo/genética
12.
PLoS Comput Biol ; 18(4): e1010048, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35468135

RESUMEN

Tumors often harbor orders of magnitude more mutations than healthy tissues. The increased number of mutations may be due to an elevated mutation rate or frequent cell death and correspondingly rapid cell turnover, or a combination of the two. It is difficult to disentangle these two mechanisms based on widely available bulk sequencing data, where sequences from individual cells are intermixed and, thus, the cell lineage tree of the tumor cannot be resolved. Here we present a method that can simultaneously estimate the cell turnover rate and the rate of mutations from bulk sequencing data. Our method works by simulating tumor growth and finding the parameters with which the observed data can be reproduced with maximum likelihood. Applying this method to a real tumor sample, we find that both the mutation rate and the frequency of death may be high.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias , Muerte Celular/genética , Frecuencia de los Genes/genética , Humanos , Mutación/genética , Neoplasias/genética , Neoplasias/patología
13.
Nat Commun ; 13(1): 1666, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351889

RESUMEN

Species-specific differences control cancer risk across orders of magnitude variation in body size and lifespan, e.g., by varying the copy numbers of tumor suppressor genes. It is unclear, however, how different tissues within an organism can control somatic evolution despite being subject to markedly different constraints, but sharing the same genome. Hierarchical differentiation, characteristic of self-renewing tissues, can restrain somatic evolution both by limiting divisional load, thereby reducing mutation accumulation, and by increasing cells' commitment to differentiation, which can "wash out" mutants. Here, we explore the organization of hierarchical tissues that have evolved to limit their lifetime incidence of cancer. Estimating the likelihood of cancer in the presence of mutations that enhance self-proliferation, we demonstrate that a trade-off exists between mutation accumulation and the strength of washing out. Our results explain differences in the organization of widely different hierarchical tissues, such as colon and blood.


Asunto(s)
Acumulación de Mutaciones , Neoplasias , Diferenciación Celular/genética , Evolución Clonal , Humanos , Mutación , Neoplasias/genética
14.
Elife ; 112022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35190025

RESUMEN

Core gene phylogenies provide a window into early evolution, but different gene sets and analytical methods have yielded substantially different views of the tree of life. Trees inferred from a small set of universal core genes have typically supported a long branch separating the archaeal and bacterial domains. By contrast, recent analyses of a broader set of non-ribosomal genes have suggested that Archaea may be less divergent from Bacteria, and that estimates of inter-domain distance are inflated due to accelerated evolution of ribosomal proteins along the inter-domain branch. Resolving this debate is key to determining the diversity of the archaeal and bacterial domains, the shape of the tree of life, and our understanding of the early course of cellular evolution. Here, we investigate the evolutionary history of the marker genes key to the debate. We show that estimates of a reduced Archaea-Bacteria (AB) branch length result from inter-domain gene transfers and hidden paralogy in the expanded marker gene set. By contrast, analysis of a broad range of manually curated marker gene datasets from an evenly sampled set of 700 Archaea and Bacteria reveals that current methods likely underestimate the AB branch length due to substitutional saturation and poor model fit; that the best-performing phylogenetic markers tend to support longer inter-domain branch lengths; and that the AB branch lengths of ribosomal and non-ribosomal marker genes are statistically indistinguishable. Furthermore, our phylogeny inferred from the 27 highest-ranked marker genes recovers a clade of DPANN at the base of the Archaea and places the bacterial Candidate Phyla Radiation (CPR) within Bacteria as the sister group to the Chloroflexota.


Asunto(s)
Archaea , Bacterias , Archaea/genética , Bacterias/metabolismo , Evolución Molecular , Filogenia , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
15.
Genome Biol Evol ; 14(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983052

RESUMEN

Despite the importance of natural selection in species' evolutionary history, phylogenetic methods that take into account population-level processes typically ignore selection. The assumption of neutrality is often based on the idea that selection occurs at a minority of loci in the genome and is unlikely to compromise phylogenetic inferences significantly. However, genome-wide processes like GC-bias and some variation segregating at the coding regions are known to evolve in the nearly neutral range. As we are now using genome-wide data to estimate species trees, it is natural to ask whether weak but pervasive selection is likely to blur species tree inferences. We developed a polymorphism-aware phylogenetic model tailored for measuring signatures of nucleotide usage biases to test the impact of selection in the species tree. Our analyses indicate that although the inferred relationships among species are not significantly compromised, the genetic distances are systematically underestimated in a node-height-dependent manner: that is, the deeper nodes tend to be more underestimated than the shallow ones. Such biases have implications for molecular dating. We dated the evolutionary history of 30 worldwide fruit fly populations, and we found signatures of GC-bias considerably affecting the estimated divergence times (up to 23%) in the neutral model. Our findings call for the need to account for selection when quantifying divergence or dating species evolution.


Asunto(s)
Uso de Codones , Evolución Molecular , Animales , Uso de Codones/genética , Drosophila , Nucleótidos , Filogenia , Selección Genética
16.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35021210

RESUMEN

Species tree inference from gene family trees is becoming increasingly popular because it can account for discordance between the species tree and the corresponding gene family trees. In particular, methods that can account for multiple-copy gene families exhibit potential to leverage paralogy as informative signal. At present, there does not exist any widely adopted inference method for this purpose. Here, we present SpeciesRax, the first maximum likelihood method that can infer a rooted species tree from a set of gene family trees and can account for gene duplication, loss, and transfer events. By explicitly modeling events by which gene trees can depart from the species tree, SpeciesRax leverages the phylogenetic rooting signal in gene trees. SpeciesRax infers species tree branch lengths in units of expected substitutions per site and branch support values via paralogy-aware quartets extracted from the gene family trees. Using both empirical and simulated data sets we show that SpeciesRax is at least as accurate as the best competing methods while being one order of magnitude faster on large data sets at the same time. We used SpeciesRax to infer a biologically plausible rooted phylogeny of the vertebrates comprising 188 species from 31,612 gene families in 1 h using 40 cores. SpeciesRax is available under GNU GPL at https://github.com/BenoitMorel/GeneRax and on BioConda.


Asunto(s)
Algoritmos , Duplicación de Gen , Modelos Genéticos , Linaje , Filogenia
17.
Syst Biol ; 71(4): 797-809, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34668564

RESUMEN

Dating the tree of life is central to understanding the evolution of life on Earth. Molecular clocks calibrated with fossils represent the state of the art for inferring the ages of major groups. Yet, other information on the timing of species diversification can be used to date the tree of life. For example, horizontal gene transfer events and ancient coevolutionary interactions such as (endo)symbioses occur between contemporaneous species and thus can imply temporal relationships between two nodes in a phylogeny. Temporal constraints from these alternative sources can be particularly helpful when the geological record is sparse, for example, for microorganisms, which represent the majority of extant and extinct biodiversity. Here, we present a new method to combine fossil calibrations and relative age constraints to estimate chronograms. We provide an implementation of relative age constraints in RevBayes that can be combined in a modular manner with the wide range of molecular dating methods available in the software. We use both realistic simulations and empirical datasets of 40 Cyanobacteria and 62 Archaea to evaluate our method. We show that the combination of relative age constraints with fossil calibrations significantly improves the estimation of node ages. [Archaea, Bayesian analysis, cyanobacteria, dating, endosymbiosis, lateral gene transfer, MCMC, molecular clock, phylogenetic dating, relaxed molecular clock, revbayes, tree of life.].


Asunto(s)
Fósiles , Transferencia de Gen Horizontal , Teorema de Bayes , Evolución Molecular , Filogenia , Simbiosis
18.
Science ; 372(6542)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33958449

RESUMEN

A rooted bacterial tree is necessary to understand early evolution, but the position of the root is contested. Here, we model the evolution of 11,272 gene families to identify the root, extent of horizontal gene transfer (HGT), and the nature of the last bacterial common ancestor (LBCA). Our analyses root the tree between the major clades Terrabacteria and Gracilicutes and suggest that LBCA was a free-living flagellated, rod-shaped double-membraned organism. Contrary to recent proposals, our analyses reject a basal placement of the Candidate Phyla Radiation, which instead branches sister to Chloroflexota within Terrabacteria. While most gene families (92%) have evidence of HGT, overall, two-thirds of gene transmissions have been vertical, suggesting that a rooted tree provides a meaningful frame of reference for interpreting bacterial evolution.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Evolución Molecular , Filogenia , Archaea/clasificación , Archaea/genética , Transferencia de Gen Horizontal , Genoma Bacteriano
19.
Mol Biol Evol ; 38(9): 3754-3774, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33974066

RESUMEN

Extreme halophilic Archaea thrive in high salt, where, through proteomic adaptation, they cope with the strong osmolarity and extreme ionic conditions of their environment. In spite of wide fundamental interest, however, studies providing insights into this adaptation are scarce, because of practical difficulties inherent to the purification and characterization of halophilic enzymes. In this work, we describe the evolutionary history of malate dehydrogenases (MalDH) within Halobacteria (a class of the Euryarchaeota phylum). We resurrected nine ancestors along the inferred halobacterial MalDH phylogeny, including the Last Common Ancestral MalDH of Halobacteria (LCAHa) and compared their biochemical properties with those of five modern halobacterial MalDHs. We monitored the stability of these various MalDHs, their oligomeric states and enzymatic properties, as a function of concentration for different salts in the solvent. We found that a variety of evolutionary processes, such as amino acid replacement, gene duplication, loss of MalDH gene and replacement owing to horizontal transfer resulted in significant differences in solubility, stability and catalytic properties between these enzymes in the three Halobacteriales, Haloferacales, and Natrialbales orders since the LCAHa MalDH. We also showed how a stability trade-off might favor the emergence of new properties during adaptation to diverse environmental conditions. Altogether, our results suggest a new view of halophilic protein adaptation in Archaea.


Asunto(s)
Euryarchaeota , Halobacterium , Malatos , Filogenia , Proteómica
20.
Genome Biol Evol ; 13(5)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33772552

RESUMEN

There is an expectation that analyses of molecular sequences might be able to distinguish between alternative hypotheses for ancient relationships, but the phylogenetic methods used and types of data analyzed are of critical importance in any attempt to recover historical signal. Here, we discuss some common issues that can influence the topology of trees obtained when using overly simple models to analyze molecular data that often display complicated patterns of sequence heterogeneity. To illustrate our discussion, we have used three examples of inferred relationships which have changed radically as models and methods of analysis have improved. In two of these examples, the sister-group relationship between thermophilic Thermus and mesophilic Deinococcus, and the position of long-branch Microsporidia among eukaryotes, we show that recovering what is now generally considered to be the correct tree is critically dependent on the fit between model and data. In the third example, the position of eukaryotes in the tree of life, the hypothesis that is currently supported by the best available methods is fundamentally different from the classical view of relationships between major cellular domains. Since heterogeneity appears to be pervasive and varied among all molecular sequence data, and even the best available models can still struggle to deal with some problems, the issues we discuss are generally relevant to phylogenetic analyses. It remains essential to maintain a critical attitude to all trees as hypotheses of relationship that may change with more data and better methods.


Asunto(s)
Evolución Biológica , Modelos Genéticos , Filogenia , Deinococcus/clasificación , Microsporidios/clasificación , Thermus/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...