Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Blood ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178344

RESUMEN

Sickle cell disease (SCD) is canonically characterized by reduced red blood cell (RBC) deformability leading to microvascular obstruction and inflammation. While the biophysical properties of sickle RBCs are known to influence SCD vasculopathy, the contribution of poor RBC deformability to endothelial dysfunction has yet to be fully explored. Leveraging interrelated in vitro and in silico approaches, we introduce a new paradigm of SCD vasculopathy in which poorly deformable sickle RBCs directly cause endothelial dysfunction via mechanotransduction, where endothelial cells sense and pathophysiologically respond to aberrant physical forces independently of microvascular obstruction, adhesion, or hemolysis. We demonstrate that perfusion of sickle RBCs or pharmacologically-dehydrated healthy RBCs into small venule-sized "endothelialized" microfluidics leads to pathologic physical interactions with endothelial cells that directly induce inflammatory pathways. Using a combination of computational simulations and large venule-sized endothelialized microfluidics, we observed that perfusion of heterogeneous sickle RBC subpopulations of varying deformability, as well as suspensions of dehydrated normal RBCs admixed with normal RBCs leads to aberrant margination of the less-deformable RBC subpopulations towards the vessel walls, causing localized, increased shear stress. Increased wall stress is dependent on the degree of subpopulation heterogeneity and oxygen tension and leads to inflammatory endothelial gene expression via mechanotransductive pathways. Our multifaceted approach demonstrates that the presence of sickle RBCs with reduced deformability leads directly to pathological physical (i.e., direct collisions and/or compressive forces) and shear-mediated interactions with endothelial cells and induces an inflammatory response, thereby elucidating the ubiquity of vascular dysfunction in SCD.

2.
Lab Chip ; 22(8): 1565-1575, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35315465

RESUMEN

Characterization of blood flow rheology in hematological disorders is critical for understanding disease pathophysiology. Existing methods to measure blood rheological parameters are limited in their physiological relevance, and there is a need for new tools that focus on the microcirculation and extract properties at finer resolution than overall flow resistance. Herein, we present a method that combines microfluidic systems and powerful object-tracking computational technologies with mathematical modeling to separate the red blood cell flow profile into a bulk component and a wall component. We use this framework to evaluate differential contributions of effective viscosity and wall friction to the overall resistance in blood from patients with sickle cell disease (SCD) under a range of oxygen tensions. Our results demonstrate that blood from patients with SCD exhibits elevated frictional and viscous resistances at all physiologic oxygen tensions. Additionally, the viscous resistance increases more rapidly than the frictional resistance as oxygen tension decreases, which may confound analyses that extract only flow velocities or overall flow resistances. Furthermore, we evaluate the impact of transfusion treatments on the components of the resistance, revealing patient variability in blood properties that may improve our understanding of the heterogeneity of clinical responses to such treatments. Overall, our system provides a new method to analyze patient-specific blood properties and can be applied to a wide range of hematological and vascular disorders.


Asunto(s)
Anemia de Células Falciformes , Técnicas Analíticas Microfluídicas , Fricción , Humanos , Oxígeno , Extractos Vegetales , Reología , Viscosidad
3.
Haematologica ; 107(6): 1438-1447, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34706495

RESUMEN

Sickle cell disease (SCD) is characterized by sickle hemoglobin (HbS) which polymerizes under deoxygenated conditions to form a stiff, sickled erythrocyte. The dehydration of sickle erythrocytes increases intracellular HbS concentration and the propensity of erythrocyte sickling. Prevention of this mechanism may provide a target for potential SCD therapy investigation. Ionophores such as monensin can increase erythrocyte sodium permeability by facilitating its transmembrane transport, leading to osmotic swelling of the erythrocyte and decreased hemoglobin concentration. In this study, we treated 13 blood samples from patients with SCD with 10 nM of monensin ex vivo. We measured changes in cell volume and hemoglobin concentration in response to monensin treatment, and we perfused treated blood samples through a microfluidic device that permits quantification of blood flow under controlled hypoxia. Monensin treatment led to increases in cell volume and reductions in hemoglobin concentration in most blood samples, though the degree of response varied across samples. Monensin-treated samples also demonstrated reduced blood flow impairment under hypoxic conditions relative to untreated controls. Moreover, there was a significant correlation between the improvement in blood flow and the decrease in hemoglobin concentration. Thus, our results demonstrate that a reduction in intracellular HbS concentration by osmotic swelling improves blood flow under hypoxic conditions. Although the toxicity of monensin will likely prevent it from being a viable clinical treatment, these results suggest that osmotic swelling should be investigated further as a potential mechanism for SCD therapy.


Asunto(s)
Anemia de Células Falciformes , Eritrocitos , Ionóforos , Monensina , Anemia de Células Falciformes/tratamiento farmacológico , Eritrocitos/efectos de los fármacos , Hemoglobina Falciforme , Humanos , Hipoxia , Ionóforos/farmacología , Ionóforos/uso terapéutico , Monensina/farmacología , Monensina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA