Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Occup Environ Hyg ; 17(10): 480-494, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32776823

RESUMEN

In the event of a chemical, biological, radiological, or nuclear (CBRN) hazard release, emergency responders rely on respiratory protection to prevent inhalation of these hazards. The National Institute for Occupational Safety and Health's (NIOSH) CBRN Statement of Standard calls for CBRN respirator canisters to be challenged with 11 different chemical test representative agents (TRAs) during certification testing, which represent hazards from 7 distinct Chemical Families; these 11 TRAs were identified during the original 2001 CBRN hazard assessment. CBRN hazards are constantly evolving in type, intent of use, and ways of dissemination. Thus, new and emerging hazards must be identified to ensure CBRN canisters continue to provide protection to emergency responders against all hazards that would most likely be used in an intentional or unintentional event. The objectives are to: (1) update the CBRN list of hazards to ensure NIOSH-approved CBRN canisters continue to provide adequate protection capabilities from newly emerging chemical and radiological hazards and (2) identify the need to update NIOSH TRAs to ensure testing conditions represent relevant hazards. These objectives were accomplished by reviewing recent hazard assessments to identify a list of chemical and radiological respiratory hazards, evaluate chemical/physical properties and filtration behavior for these hazards, group the hazards based on NIOSH's current Chemical Families, and finally compare the hazards to the current TRAs based on anticipated filtration behavior, among other criteria. Upon completion of the evaluation process, 237 hazards were identified and compared to NIOSH's current CBRN TRAs. Of these 237 hazards, 203 were able to be categorized into one of NIOSH's current seven Chemical Families. Five were identified for further evaluation. Based on reviewing key chemical/physical properties of each hazard, NIOSH's current 11 TRAs remain representative of the identified respiratory CBRN hazards to emergency responders and should continue to be used during NIOSH certification testing. Thus, NIOSH's CBRN Statement of Standard remains unchanged. The process developed standardizes a methodology for future hazard evaluations.


Asunto(s)
Filtros de Aire/normas , Contaminantes Radiactivos del Aire/química , Sustancias Peligrosas/química , Exposición por Inhalación/prevención & control , Dispositivos de Protección Respiratoria/normas , Adsorción , Ensayo de Materiales/métodos , National Institute for Occupational Safety and Health, U.S. , Estados Unidos
2.
J Occup Environ Hyg ; 11(8): 509-18, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24467190

RESUMEN

Health care workers are exposed to potentially infectious airborne particles while providing routine care to coughing patients. However, much is not understood about the behavior of these aerosols and the risks they pose. We used a coughing patient simulator and a breathing worker simulator to investigate the exposure of health care workers to cough aerosol droplets, and to examine the efficacy of face shields in reducing this exposure. Our results showed that 0.9% of the initial burst of aerosol from a cough can be inhaled by a worker 46 cm (18 inches) from the patient. During testing of an influenza-laden cough aerosol with a volume median diameter (VMD) of 8.5 µm, wearing a face shield reduced the inhalational exposure of the worker by 96% in the period immediately after a cough. The face shield also reduced the surface contamination of a respirator by 97%. When a smaller cough aerosol was used (VMD = 3.4 µm), the face shield was less effective, blocking only 68% of the cough and 76% of the surface contamination. In the period from 1 to 30 minutes after a cough, during which the aerosol had dispersed throughout the room and larger particles had settled, the face shield reduced aerosol inhalation by only 23%. Increasing the distance between the patient and worker to 183 cm (72 inches) reduced the exposure to influenza that occurred immediately after a cough by 92%. Our results show that health care workers can inhale infectious airborne particles while treating a coughing patient. Face shields can substantially reduce the short-term exposure of health care workers to large infectious aerosol particles, but smaller particles can remain airborne longer and flow around the face shield more easily to be inhaled. Thus, face shields provide a useful adjunct to respiratory protection for workers caring for patients with respiratory infections. However, they cannot be used as a substitute for respiratory protection when it is needed. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: tables of the experiments performed, more detailed information about the aerosol measurement methods, photographs of the experimental setup, and summaries of the experimental data from the aerosol measurement devices, the qPCR analysis, and the VPA.].


Asunto(s)
Aerosoles/análisis , Tos , Transmisión de Enfermedad Infecciosa de Paciente a Profesional/prevención & control , Subtipo H1N1 del Virus de la Influenza A , Exposición por Inhalación/prevención & control , Máscaras , Humanos , Maniquíes , Tamaño de la Partícula
3.
Ann Occup Hyg ; 58(2): 206-16, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24107745

RESUMEN

National Institute for Occupational Safety and Health (NIOSH) certified particulate respirators need to be properly fit tested before use to ensure workers' respiratory protection. However, the effectiveness of American National Standards Institute-/Occupational Safety and Health Administration (ANSI-/OSHA)-accepted fit tests for particulate respirators in predicting actual workplace protection provided to workers is lacking. NIOSH addressed this issue by evaluating the fit of half-mask particulate filtering respirators as a component of a program designed to add total inward leakage (TIL) requirements for all respirators to Title 42 Code of Federal Regulations Part 84. Specifically, NIOSH undertook a validation study to evaluate the reproducibility of the TIL test procedure between two laboratories. A PortaCount® was used to measure the TIL of five N95 model filtering facepiece respirators (FFRs) on test subjects in two different laboratories. Concurrently, filter efficiency for four of the five N95 FFR models was measured using laboratory aerosol as well as polydisperse NaCl aerosol employed for NIOSH particulate respirator certification. Results showed that two N95 models passed the TIL tests at a rate of ~80-85% and ~86-94% in the two laboratories, respectively. However, the TIL passing rate for the other three N95 models was 0-5.7% in both laboratories combined. Good agreement (≥83%) of the TIL data between the two laboratories was obtained. The three models that had relatively lower filter efficiency for laboratory aerosol as well as for NaCl aerosol showed relatively low TIL passing rates in both laboratories. Of the four models tested for penetration, one model with relatively higher efficiency showed a higher passing rate for TIL tests in both laboratories indicating that filter efficiency might influence TIL. Further studies are needed to better understand the implications of the data in the workplace.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Falla de Equipo , Filtración/instrumentación , Exposición por Inhalación/prevención & control , Máscaras/normas , Ensayo de Materiales/métodos , Dispositivos de Protección Respiratoria/normas , Aerosoles , Diseño de Equipo/normas , Humanos , Exposición por Inhalación/análisis , National Institute for Occupational Safety and Health, U.S. , Exposición Profesional/prevención & control , Salud Laboral , Tamaño de la Partícula , Reproducibilidad de los Resultados , Estados Unidos
5.
Aerosol Sci Technol ; 47(8): 937-944, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26500387

RESUMEN

Aerosol particles expelled during human coughs are a potential pathway for infectious disease transmission. However, the importance of airborne transmission is unclear for many diseases. To better understand the role of cough aerosol particles in the spread of disease and the efficacy of different types of protective measures, we constructed a cough aerosol simulator that produces a humanlike cough in a controlled environment. The simulated cough has a 4.2 l volume and is based on coughs recorded from influenza patients. In one configuration, the simulator produces a cough aerosol containing particles from 0.1 to 100 µm in diameter with a volume median diameter (VMD) of 8.5 µm and a geometric standard deviation (GSD) of 2.9. In a second configuration, the cough aerosol has a size range of 0.1-30 µm, a VMD of 3.4 µm, and a GSD of 2.3. The total aerosol volume expelled during each cough is 68 µl. By generating a controlled and reproducible artificial cough, the simulator allows us to test different ventilation, disinfection, and personal protection scenarios. The system can be used with live pathogens, including influenza virus, which allows isolation precautions used in the healthcare field to be tested without risk of exposure for workers or patients. The information gained from tests with the simulator will help to better understand the transmission of infectious diseases, develop improved techniques for infection control, and improve safety for healthcare workers and patients.

6.
J Occup Environ Hyg ; 9(12): 681-90, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23033849

RESUMEN

Few studies have quantified the dispersion of potentially infectious bioaerosols produced by patients in the health care environment and the exposure of health care workers to these particles. Controlled studies are needed to assess the spread of bioaerosols and the efficacy of different types of respiratory personal protective equipment (PPE) in preventing airborne disease transmission. An environmental chamber was equipped to simulate a patient coughing aerosol particles into a medical examination room, and a health care worker breathing while exposed to these particles. The system has three main parts: (1) a coughing simulator that expels an aerosol-laden cough through a head form; (2) a breathing simulator with a second head form that can be fitted with respiratory PPE; and (3) aerosol particle counters to measure concentrations inside and outside the PPE and at locations throughout the room. Dispersion of aerosol particles with optical diameters from 0.3 to 7.5 µm was evaluated along with the influence of breathing rate, room ventilation, and the locations of the coughing and breathing simulators. Penetration of cough aerosol particles through nine models of surgical masks and respirators placed on the breathing simulator was measured at 32 and 85 L/min flow rates and compared with the results from a standard filter tester. Results show that cough-generated aerosol particles spread rapidly throughout the room, and that within 5 min, a worker anywhere in the room would be exposed to potentially hazardous aerosols. Aerosol exposure is highest with no personal protective equipment, followed by surgical masks, and the least exposure is seen with N95 FFRs. These differences are seen regardless of breathing rate and relative position of the coughing and breathing simulators. These results provide a better understanding of the exposure of workers to cough aerosols from patients and of the relative efficacy of different types of respiratory PPE, and they will assist investigators in providing research-based recommendations for effective respiratory protection strategies in health care settings.


Asunto(s)
Aerosoles/análisis , Tos , Transmisión de Enfermedad Infecciosa/prevención & control , Transmisión de Enfermedad Infecciosa de Paciente a Profesional/prevención & control , Modelos Teóricos , Exposición Profesional/análisis , Humanos , Exposición por Inhalación/prevención & control , Máscaras , Exposición Profesional/prevención & control , Tamaño de la Partícula , Dispositivos de Protección Respiratoria/normas , Ventilación
7.
Clin Infect Dis ; 54(11): 1569-77, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22460981

RESUMEN

BACKGROUND: The potential for aerosol transmission of infectious influenza virus (ie, in healthcare facilities) is controversial. We constructed a simulated patient examination room that contained coughing and breathing manikins to determine whether coughed influenza was infectious and assessed the effectiveness of an N95 respirator and surgical mask in blocking transmission. METHODS: National Institute for Occupational Safety and Health aerosol samplers collected size-fractionated aerosols for 60 minutes at the mouth of the breathing manikin, beside the mouth, and at 3 other locations in the room. Total recovered virus was quantitated by quantitative polymerase chain reaction and infectivity was determined by the viral plaque assay and an enhanced infectivity assay. RESULTS: Infectious influenza was recovered in all aerosol fractions (5.0% in >4 µm aerodynamic diameter, 75.5% in 1-4 µm, and 19.5% in <1 µm; n = 5). Tightly sealing a mask to the face blocked entry of 94.5% of total virus and 94.8% of infectious virus (n = 3). A tightly sealed respirator blocked 99.8% of total virus and 99.6% of infectious virus (n = 3). A poorly fitted respirator blocked 64.5% of total virus and 66.5% of infectious virus (n = 3). A mask documented to be loosely fitting by a PortaCount fit tester, to simulate how masks are worn by healthcare workers, blocked entry of 68.5% of total virus and 56.6% of infectious virus (n = 2). CONCLUSIONS: These results support a role for aerosol transmission and represent the first reported laboratory study of the efficacy of masks and respirators in blocking inhalation of influenza in aerosols. The results indicate that a poorly fitted respirator performs no better than a loosely fitting mask.


Asunto(s)
Aerosoles , Microbiología del Aire , Tos , Gripe Humana/transmisión , Gripe Humana/virología , Orthomyxoviridae/aislamiento & purificación , Transmisión de Enfermedad Infecciosa/prevención & control , Humanos , Gripe Humana/patología , Máscaras/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , Carga Viral , Ensayo de Placa Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...