Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36991704

RESUMEN

Baler-wrappers are machines designed to produce high-quality forage, in accordance with the requirements of sustainable agriculture. Their complicated structure, and significant loads occurring during operation, prompted the creation of systems for controlling the machines' processes and measuring the most important work parameters, in this work. The compaction control system is based on a signal from the force sensors. It allows for detection differences in the compression of the bale and additionally protects against overload. The method of measuring the swath size, with the use of a 3D camera, was presented. Scanning the surface and travelled distance allows for estimating the volume of the collected material-making it possible to create yield maps (precision farming). It is also used to vary the dosage of ensilage agents, that control the fodder formation process, in relation to the moisture and temperature of the material. The paper also deals with the issue of measuring the weight of the bales-securing the machine against overload and collecting data for planning the bales' transport. The machine, equipped with the above-mentioned systems, allows for safer and more efficient work, and provides information about the state of the crop in relation to a geographical position, which allows for further inferences.

2.
Materials (Basel) ; 14(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34832150

RESUMEN

The aim of the study was to assess the stresses of the structural materials of the forming module in the process of burger production from vegetable outgrades. The simulation research object was a virtual CAD 3D model of a device used for forming multi-vegetable products. Strength tests were performed on the computational model by applying the finite element method. The following were analyzed in the model: the forces exerted by the mixture of vegetables on the side walls of the tank and the dosing unit; the force from the servomotor resulting from the horizontal thickening of the vegetable mixture; the force from the servomotor resulting from the vertical mixing of the vegetable mixture; the force from the die assembly actuator; the force caused by punching the actuator from the die assembly. For evaluating the structure in the scope of the study, it was assumed that safely reduced stresses should be taken into account, with a safety factor equal to 1.1 of the yield strength of the parent material from which the structure was made (steel 1.4301 (304) with a yield stress Re0.2 of 230 MPa). For welds, safely reduced stresses should be taken into account, with a safety factor equal to 1.4 of the yield strength (Re0.2 of 230 MPa). Strength analyses confirmed that the permissible stress levels were not exceeded in the molding module.

3.
Ann Agric Environ Med ; 25(3): 433-436, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30260195

RESUMEN

INTRODUCTION: Noise is one of the most important physical factors occurring in private farmers' working environment. Hazardous noise exposures and hearing loss have been documented among farmers and farm workers for many years. In most cases, reducing the amplitude of vibratory motion of elements in a machine will reduce the noise generated by the machine element. The authors present the results on studies performed on a grain crusher with the aim of optimizing their acoustic behaviour. MATERIALS AND METHOD: The dynamic behaviour of a grain crusher was investigated by identification of its natural frequency and damping parameters. The study was conducted using the experimental modal analysis technique. The excitation was generated at one single point by a vibration exciter, and the response signals were acquired by an accelerometers fixed at different points of the grain crusher. The modal parameters were determined from a set of frequency response measurements between a reference point and a number of measurement points of the structure. RESULTS: The introduced structural modifications reduced the noise level by 3dB (A)5 dB[lin]) for the hopper component frequencies related to the vibration of the hopper (180 Hz) and the crusher support structure (240 to 480 Hz). The level of these components determines the level of noise at the operator's work station for the average conditions of filling the hopper with grain. The total noise level at the crusher operator was reduced by 2.6 dB (A). CONCLUSIONS: Reducing the amplitude of vibratory motion of the elements in a machine will reduce the noise generated by the machine element. The obtained results confirm that structural dynamic modification is an effective tool for changing the dynamical properties of vibrating systems.


Asunto(s)
Enfermedades de los Trabajadores Agrícolas/etiología , Agricultura/instrumentación , Equipos y Suministros/efectos adversos , Agricultores/estadística & datos numéricos , Ruido en el Ambiente de Trabajo/efectos adversos , Exposición Profesional/análisis , Acústica , Humanos , Exposición Profesional/efectos adversos , Vibración/efectos adversos
4.
Ann Agric Environ Med ; 23(2): 373-6, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27294650

RESUMEN

INTRODUCTION AND OBJECTIVE: Many people are exposed to vibration (WBV) in their occupational lives. The biodynamic responses of the human body in sitting conditions have been widely measured under whole-body vibration (WBV). The measures are most often expressed in terms of force-motion relations at the driving-point, namely, mechanical impedance, apparent mass and absorbed power, and flow of vibration through the body, such as seat-to-head and body segments vibration transmissibility. The absorbed power is a measure of the energy absorbed by the subject due to the external forces applied to the system. MATERIALS AND METHODS: The body behaves like a vibrating physical system with distributed energy-storage elements (masses, springs) and energy-dissipation elements (dampers). The total quantity of power can be divided into 2 components - one real and one imaginary. The real component reflects the energy-absorbing part of the system, due to the transformation of friction into heat within the tissues. The imaginary component reflects the energy-storing part of the system which does not consume any vibration energy. RESULTS: The seated human is modeled as a series 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator's body segments has been determined as a function of the agricultural combination operating speed 1.4 - 2.75 ms(-1). CONCLUSIONS: The concept of absorbed power as a measurement for evaluation of WBV exposure opens a new area for research. The important character of absorbed power is that it has physical significance and therefore can be measured as well as computed analytically. The absorbed power relates to dissipation of energy attributed to relative motions of the visco-elastic tissues, muscles and skeletal system, which under prolonged exposures could lead to physical damage in the musculoskeletal system. A structural model of the human operator allows determination of the dynamic characteristics of the model, and study of the energy flow between the elements of the model.


Asunto(s)
Agricultura/instrumentación , Exposición Profesional , Vibración , Fenómenos Biomecánicos , Humanos , Modelos Teóricos
5.
Ann Agric Environ Med ; 21(2): 399-402, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24959797

RESUMEN

Many people are exposed to whole-body vibration (WBV) in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA). The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 - 4.16 ms(-1).


Asunto(s)
Transferencia de Energía , Vehículos a Motor , Exposición Profesional , Transportes , Vibración , Absorción Fisicoquímica , Humanos , Modelos Teóricos
6.
Ann Agric Environ Med ; 21(2): 403-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24959798

RESUMEN

Statistics show that the travel of agricultural machinery to a work area and their movement during labour is the source of many serious accidents. The most dangerous in consequences prove to be those that occur during transport and associated with maneuvering tractors and machinery (about 30% of all fatal accidents). It can be assumed that at least some of these accidents were caused indirectly by the specific design features of agricultural machines which adversely affect the driveability. The single- and multi-loop structures of the driver-vehicle system models are formulated to study the contributions of various preview and prediction strategies to the path tracking and dynamic performance of the articulated vehicle. In the presented study the compensatory model of driver utilizes the lateral acceleration of the tractor, roll angle of trailer sprung mass and the articulation rate as the internal motion feedback variables. The control model of steering of an agricultural set has been implemented in the Matlab/Simulink environment. The model has been constructed with the use of stochastic methods and operational transmittances describing the various components of the system. The model operational transmittances has been estimated using Box-Jenkins and continuous-time process models from input-output data. The model has been tested using experimental data from road investigation of the agricultural set.


Asunto(s)
Agricultura , Modelos Teóricos , Vehículos a Motor , Salud Laboral , Seguridad/normas , Humanos , Salud Laboral/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA