Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Diagn Ther ; 26(6): 699-713, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36053463

RESUMEN

INTRODUCTION: The accurate detection of genetic variants such as single substitutions (IDH1/2, TERT), chromosomal abnormalities (CDKN2A, 1p/19q deletions, and EGFR amplifications), or promoter methylations (MGMT) is critical for glioma patient management, as emphasized in the World Health Organization's (WHO's) most recent classification in 2021 (WHO CNS5). The purpose of this study was to evaluate novel innovative methods for determining IDH1/2 status in the context of WHO CNS5. METHODS: Multiple biomarkers were simultaneously screened using next-generation sequencing (NGS) on 34 glioma samples. In cases where the IDH1/2 status determined by immunohistochemistry (IHC) or multiplex ligation-dependent probe amplification (MLPA) was inconsistent with the NGS results, quantitative polymerase chain reaction (qPCR) and Sanger sequencing were performed to resolve the adjudicated discrepancy. RESULTS: IDH1/2 NGS results differ from IHC (7/13 samples) as well as MLPA reports (1/4 samples). All NGS findings were confirmed by qPCR and Sanger sequencing. WHO CNS5 requires assessment of multiple mutations for glioma classification. CONCLUSIONS: We demonstrated that qPCR or NGS performed in reference genetic laboratories, rather than IHC, is the most reliable method for IDH1/2 analysis. Clinicians should be aware of discrepancies in MLPA or IHC results and seek reconsultation in facilities with extensive access to advanced molecular technologies. Moreover, we proposed a new algorithm for the molecular diagnostic procedures in glioma patients based on the WHO CNS5.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico , Inmunohistoquímica , Glioma/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Organización Mundial de la Salud , Isocitrato Deshidrogenasa/genética
2.
Genes (Basel) ; 12(4)2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918338

RESUMEN

(1) Background: Although, in the mutated BRCA detected in the Polish population of patients with breast cancer, there is a large percentage of recurrent pathogenic variants, an increasing need for the assessment of rare BRCA1/2 variants using NGS can be observed. (2) Methods: We studied 75 selected patients with breast cancer (negative for the presence of 5 mutations tested in the Polish population in the prophylactic National Cancer Control Program). DNA extracted from the cancer tissue of these patients was used to prepare a library and to sequence all coding regions of the BRCA1/2 genes. (3) Results: We detected nine pathogenic variants in 8 out of 75 selected patients (10.7%). We identified one somatic and eight germline variants. We also used different bioinformatic NGS software programs to analyze NGS FASTQ files and established that tertiary analysis performed with different tools was more likely to give the same outcome if we analyzed files received from secondary analysis using the same method. (4) Conclusions: Our study emphasizes (i) the importance of an NGS validation process with a bioinformatic procedure included; (ii) the importance of screening both somatic and germline pathogenic variants; (iii) the urgent need to identify additional susceptible genes in order to explain the high percentage of non-BRCA-related hereditary cases of breast cancer.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Biología Computacional/métodos , Mutación , Adulto , Anciano , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Polonia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...