Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 8(2): e0117822, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37010293

RESUMEN

Comprehensive protein function annotation is essential for understanding microbiome-related disease mechanisms in the host organisms. However, a large portion of human gut microbial proteins lack functional annotation. Here, we have developed a new metagenome analysis workflow integrating de novo genome reconstruction, taxonomic profiling, and deep learning-based functional annotations from DeepFRI. This is the first approach to apply deep learning-based functional annotations in metagenomics. We validate DeepFRI functional annotations by comparing them to orthology-based annotations from eggNOG on a set of 1,070 infant metagenomes from the DIABIMMUNE cohort. Using this workflow, we generated a sequence catalogue of 1.9 million nonredundant microbial genes. The functional annotations revealed 70% concordance between Gene Ontology annotations predicted by DeepFRI and eggNOG. DeepFRI improved the annotation coverage, with 99% of the gene catalogue obtaining Gene Ontology molecular function annotations, although they are less specific than those from eggNOG. Additionally, we constructed pangenomes in a reference-free manner using high-quality metagenome-assembled genomes (MAGs) and analyzed the associated annotations. eggNOG annotated more genes on well-studied organisms, such as Escherichia coli, while DeepFRI was less sensitive to taxa. Further, we show that DeepFRI provides additional annotations in comparison to the previous DIABIMMUNE studies. This workflow will contribute to novel understanding of the functional signature of the human gut microbiome in health and disease as well as guiding future metagenomics studies. IMPORTANCE The past decade has seen advancement in high-throughput sequencing technologies resulting in rapid accumulation of genomic data from microbial communities. While this growth in sequence data and gene discovery is impressive, the majority of microbial gene functions remain uncharacterized. The coverage of functional information coming from either experimental sources or inferences is low. To solve these challenges, we have developed a new workflow to computationally assemble microbial genomes and annotate the genes using a deep learning-based model DeepFRI. This improved microbial gene annotation coverage to 1.9 million metagenome-assembled genes, representing 99% of the assembled genes, which is a significant improvement compared to 12% Gene Ontology term annotation coverage by commonly used orthology-based approaches. Importantly, the workflow supports pangenome reconstruction in a reference-free manner, allowing us to analyze the functional potential of individual bacterial species. We therefore propose this alternative approach combining deep-learning functional predictions with the commonly used orthology-based annotations as one that could help us uncover novel functions observed in metagenomic microbiome studies.


Asunto(s)
Aprendizaje Profundo , Microbiota , Humanos , Metagenoma/genética , Anotación de Secuencia Molecular , Microbiota/genética , Genoma Microbiano
2.
Nat Commun ; 14(1): 2351, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100781

RESUMEN

For the past half-century, structural biologists relied on the notion that similar protein sequences give rise to similar structures and functions. While this assumption has driven research to explore certain parts of the protein universe, it disregards spaces that don't rely on this assumption. Here we explore areas of the protein universe where similar protein functions can be achieved by different sequences and different structures. We predict ~200,000 structures for diverse protein sequences from 1,003 representative genomes across the microbial tree of life and annotate them functionally on a per-residue basis. Structure prediction is accomplished using the World Community Grid, a large-scale citizen science initiative. The resulting database of structural models is complementary to the AlphaFold database, with regards to domains of life as well as sequence diversity and sequence length. We identify 148 novel folds and describe examples where we map specific functions to structural motifs. We also show that the structural space is continuous and largely saturated, highlighting the need for a shift in focus across all branches of biology, from obtaining structures to putting them into context and from sequence-based to sequence-structure-function based meta-omics analyses.


Asunto(s)
Pliegue de Proteína , Proteínas , Proteínas/metabolismo , Secuencia de Aminoácidos , Relación Estructura-Actividad , Bases de Datos de Proteínas
3.
Front Microbiol ; 13: 951044, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188001

RESUMEN

In this study, electrogenic microbial communities originating from a single source were multiplied using our custom-made, 96-well-plate-based microbial fuel cell (MFC) array. Developed communities operated under different pH conditions and produced currents up to 19.4 A/m3 (0.6 A/m2) within 2 days of inoculation. Microscopic observations [combined scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)] revealed that some species present in the anodic biofilm adsorbed copper on their surface because of the bioleaching of the printed circuit board (PCB), yielding Cu2 + ions up to 600 mg/L. Beta- diversity indicates taxonomic divergence among all communities, but functional clustering is based on reactor pH. Annotated metagenomes showed the high presence of multicopper oxidases and Cu-resistance genes, as well as genes encoding aliphatic and aromatic hydrocarbon-degrading enzymes, corresponding to PCB bioleaching. Metagenome analysis revealed a high abundance of Dietzia spp., previously characterized in MFCs, which did not grow at pH 4. Binning metagenomes allowed us to identify novel species, one belonging to Actinotalea, not yet associated with electrogenicity and enriched only in the pH 7 anode. Furthermore, we identified 854 unique protein-coding genes in Actinotalea that lacked sequence homology with other metagenomes. The function of some genes was predicted with high accuracy through deep functional residue identification (DeepFRI), with several of these genes potentially related to electrogenic capacity. Our results demonstrate the feasibility of using MFC arrays for the enrichment of functional electrogenic microbial consortia and data mining for the comparative analysis of either consortia or their members.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA