Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioelectrochemistry ; 149: 108314, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36335789

RESUMEN

A new redox polymer/bilirubin oxidase (BOD)-based gas diffusion electrode was designed to be implemented as the non-current and non-stability limiting biocathode in a glucose/O2 biofuel cell that acts as a self-powered glucose biosensor. For the proof-of-concept, a bioanode comprising the Os-complex modified redox polymer P(VI-co-AA)-[Os(bpy)2Cl]Cl and FAD-dependent glucose dehydrogenase to oxidize the analyte was used. In order to develop an optimal O2-reducing biocathode for the biofuel cell Mv-BOD as well as Bp-BOD and Mo-BOD have been tested in gas diffusion electrodes in direct electron transfer as well as in mediated electron transfer immobilized in the Os-complex modified redox polymer P(VI-co-AA)-[Os(diCl-bpy)2]Cl2. The resulting biofuel cell exhibits a glucose-dependent current and power output in the concentration region between 1 and 10 mM. To create a more realistic test environment, the performance and long-term stability of the biofuel cell-based self-powered glucose biosensor has been investigated in a flow-through cell design.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Bilirrubina , Electrodos , Enzimas Inmovilizadas/metabolismo , Glucosa , Glucosa 1-Deshidrogenasa/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Polímeros , Gases
2.
ACS Appl Mater Interfaces ; 14(41): 46421-46426, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36194638

RESUMEN

The development of electrodes for efficient CO2 reduction while forming valuable compounds is critical. The use of enzymes as catalysts provides the advantage of high catalytic activity in combination with highly selective transformations. We describe the electrical wiring of a carbon monoxide dehydrogenase II from Carboxydothermus hydrogenoformans (ChCODH II) using a cobaltocene-based low-potential redox polymer for the selective reduction of CO2 to CO over gas diffusion electrodes. High catalytic current densities of up to -5.5 mA cm-2 are achieved, exceeding the performance of previously reported bioelectrodes for CO2 reduction based on either carbon monoxide dehydrogenases or formate dehydrogenases. The proposed bioelectrode reveals considerable stability with a half-life of more than 20 h of continuous operation. Product quantification using gas chromatography confirmed the selective transformation of CO2 into CO without any parasitic co-reactions at the applied potentials.


Asunto(s)
Monóxido de Carbono , Formiato Deshidrogenasas , Formiato Deshidrogenasas/química , Monóxido de Carbono/química , Dióxido de Carbono/química , Polímeros , Instalación Eléctrica , Electrodos , Oxidación-Reducción
3.
Angew Chem Int Ed Engl ; 60(4): 2000-2006, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33075190

RESUMEN

Well-defined assemblies of photosynthetic protein complexes are required for an optimal performance of semi-artificial energy conversion devices, capable of providing unidirectional electron flow when light-harvesting proteins are interfaced with electrode surfaces. We present mixed photosystem I (PSI) monolayers constituted of native cyanobacterial PSI trimers in combination with isolated PSI monomers from the same organism. The resulting compact arrangement ensures a high density of photoactive protein complexes per unit area, providing the basis to effectively minimize short-circuiting processes that typically limit the performance of PSI-based bioelectrodes. The PSI film is further interfaced with redox polymers for optimal electron transfer, enabling highly efficient light-induced photocurrent generation. Coupling of the photocathode with a [NiFeSe]-hydrogenase confirms the possibility to realize light-induced H2 evolution.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Complejo de Proteína del Fotosistema I/metabolismo , Anisotropía , Cianobacterias/metabolismo , Transporte de Electrón , Luz
4.
Angew Chem Int Ed Engl ; 59(38): 16506-16510, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32432842

RESUMEN

The incorporation of highly active but also highly sensitive catalysts (e.g. the [FeFe] hydrogenase from Desulfovibrio desulfuricans) in biofuel cells is still one of the major challenges in sustainable energy conversion. We report the fabrication of a dual-gas diffusion electrode H2 /O2 biofuel cell equipped with a [FeFe] hydrogenase/redox polymer-based high-current-density H2 -oxidation bioanode. The bioanodes show benchmark current densities of around 14 mA cm-2 and the corresponding fuel cell tests exhibit a benchmark for a hydrogenase/redox polymer-based biofuel cell with outstanding power densities of 5.4 mW cm-2 at 0.7 V cell voltage. Furthermore, the highly sensitive [FeFe] hydrogenase is protected against oxygen damage by the redox polymer and can function under 5 % O2 .


Asunto(s)
Biocombustibles , Desulfovibrio desulfuricans/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Oxígeno/metabolismo , Polímeros/metabolismo , Fuentes de Energía Bioeléctrica , Desulfovibrio desulfuricans/química , Desulfovibrio desulfuricans/enzimología , Difusión , Electrodos , Hidrógeno/química , Hidrogenasas/química , Estructura Molecular , Oxidación-Reducción , Oxígeno/química , Polímeros/química
5.
ChemSusChem ; 13(14): 3627-3635, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32339386

RESUMEN

Variants of the highly active [NiFeSe] hydrogenase from D. vulgaris Hildenborough that exhibit enhanced O2 tolerance were used as H2 -oxidation catalysts in H2 /O2 biofuel cells. Two [NiFeSe] variants were electrically wired by means of low-potential viologen-modified redox polymers and evaluated with respect to H2 -oxidation and stability against O2 in the immobilized state. The two variants showed maximum current densities of (450±84) µA cm-2 for G491A and (476±172) µA cm-2 for variant G941S on glassy carbon electrodes and a higher O2 tolerance than the wild type. In addition, the polymer protected the enzyme from O2 damage and high-potential inactivation, establishing a triple protection for the bioanode. The use of gas-diffusion bioanodes provided current densities for H2 -oxidation of up to 6.3 mA cm-2 . Combination of the gas-diffusion bioanode with a bilirubin oxidase-based gas-diffusion O2 -reducing biocathode in a membrane-free biofuel cell under anode-limiting conditions showed unprecedented benchmark power densities of 4.4 mW cm-2 at 0.7 V and an open-circuit voltage of 1.14 V even at moderate catalyst loadings, outperforming the previously reported system obtained with the [NiFeSe] wild type and the [NiFe] hydrogenase from D. vulgaris Miyazaki F.


Asunto(s)
Enzimas Inmovilizadas/química , Hidrógeno/química , Hidrogenasas/química , Oxígeno/química , Polímeros/química , Biocombustibles , Catálisis , Técnicas Electroquímicas , Electrodos , Enzimas Inmovilizadas/metabolismo , Hidrogenasas/metabolismo , Cinética , Oxidación-Reducción , Propiedades de Superficie
6.
Nat Commun ; 9(1): 4715, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413708

RESUMEN

Hydrogen is one of the most promising alternatives for fossil fuels. However, the power output of hydrogen/oxygen fuel cells is often restricted by mass transport limitations of the substrate. Here, we present a dual-gas breathing H2/air biofuel cell that overcomes these limitations. The cell is equipped with a hydrogen-oxidizing redox polymer/hydrogenase gas-breathing bioanode and an oxygen-reducing bilirubin oxidase gas-breathing biocathode (operated in a direct electron transfer regime). The bioanode consists of a two layer system with a redox polymer-based adhesion layer and an active, redox polymer/hydrogenase top layer. The redox polymers protect the biocatalyst from high potentials and oxygen damage. The bioanodes show remarkable current densities of up to 8 mA cm-2. A maximum power density of 3.6 mW cm-2 at 0.7 V and an open circuit voltage of up to 1.13 V were achieved in biofuel cell tests, representing outstanding values for a device that is based on a redox polymer-based hydrogenase bioanode.


Asunto(s)
Aire , Biocombustibles/análisis , Hidrógeno/química , Hidrogenasas/metabolismo , Polímeros/química , Electroquímica , Electrodos , Oxidación-Reducción
7.
Nat Commun ; 9(1): 3675, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30202006

RESUMEN

Hydrogenases with Ni- and/or Fe-based active sites are highly active hydrogen oxidation catalysts with activities similar to those of noble metal catalysts. However, the activity is connected to a sensitivity towards high-potential deactivation and oxygen damage. Here we report a fully protected polymer multilayer/hydrogenase-based bioanode in which the sensitive hydrogen oxidation catalyst is protected from high-potential deactivation and from oxygen damage by using a polymer multilayer architecture. The active catalyst is embedded in a low-potential polymer (protection from high-potential deactivation) and covered with a polymer-supported bienzymatic oxygen removal system. In contrast to previously reported polymer-based protection systems, the proposed strategy fully decouples the hydrogenase reaction form the protection process. Incorporation of the bioanode into a hydrogen/glucose biofuel cell provides a benchmark open circuit voltage of 1.15 V and power densities of up to 530 µW cm-2 at 0.85 V.


Asunto(s)
Fuentes de Energía Bioeléctrica , Glucosa/química , Hidrógeno/química , Hidrogenasas/química , Aspergillus niger/enzimología , Carbono/química , Catálisis , Electrodos , Glucosa Oxidasa/química , Oxidación-Reducción , Oxígeno/química , Polímeros/química
8.
ACS Energy Lett ; 2(5): 964-968, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32226822

RESUMEN

We report on the fabrication of bioanodes for H2 oxidation based on [NiFeSe] hydrogenase. The enzyme was electrically wired by means of a specifically designed low-potential viologen-modified polymer, which delivers benchmark H2 oxidizing currents even under deactivating conditions owing to efficient protection against O2 combined with a viologen-induced reactivation of the O2 inhibited enzyme. Moreover, the viologen-modified polymer allows for electrochemical co-deposition of polymer and biocatalyst and, by this, for control of the film thickness. Protection and reactivation of the enzyme was demonstrated in thick and thin reaction layers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...