Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(21): e2316006121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748577

RESUMEN

Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/ß-catenin signaling and inhibition of the TGF-ß pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/ß-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Barrera Hematoencefálica/metabolismo , Humanos , Células Endoteliales/metabolismo , Animales , Vía de Señalización Wnt , Claudina-5/metabolismo , Claudina-5/genética , AMP Cíclico/metabolismo , Ratones , Células Madre/metabolismo , Células Madre/citología , Uniones Estrechas/metabolismo , beta Catenina/metabolismo
2.
Lab Chip ; 24(5): 1030-1063, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38353254

RESUMEN

A great progress has been made in the development and use of lab-on-a-chip devices to model and study the blood-brain barrier (BBB) in the last decade. We present the main types of BBB-on-chip models and their use for the investigation of BBB physiology, drug and nanoparticle transport, toxicology and pathology. The selection of the appropriate cell types to be integrated into BBB-on-chip devices is discussed, as this greatly impacts the physiological relevance and translatability of findings. We identify knowledge gaps, neglected engineering and cell biological aspects and point out problems and contradictions in the literature of BBB-on-chip models, and suggest areas for further studies to progress this highly interdisciplinary field. BBB-on-chip models have an exceptional potential as predictive tools and alternatives of animal experiments in basic and preclinical research. To exploit the full potential of this technique expertise from materials science, bioengineering as well as stem cell and vascular/BBB biology is necessary. There is a need for better integration of these diverse disciplines that can only be achieved by setting clear parameters for characterizing both the chip and the BBB model parts technically and functionally.


Asunto(s)
Barrera Hematoencefálica , Modelos Biológicos , Animales , Barrera Hematoencefálica/metabolismo , Dispositivos Laboratorio en un Chip , Transporte Biológico , Encéfalo
3.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34948054

RESUMEN

The brain insulin metabolism alteration has been addressed as a pathophysiological factor underlying Alzheimer's disease (AD). Insulin can be beneficial in AD, but its macro-polypeptide nature negatively influences the chances of reaching the brain. The intranasal (IN) administration of therapeutics in AD suggests improved brain-targeting. Solid lipid nanoparticles (SLNs) and poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are promising carriers to deliver the IN-administered insulin to the brain due to the enhancement of the drug permeability, which can even be improved by chitosan-coating. In the present study, uncoated and chitosan-coated insulin-loaded SLNs and PLGA NPs were formulated and characterized. The obtained NPs showed desirable physicochemical properties supporting IN applicability. The in vitro investigations revealed increased mucoadhesion, nasal diffusion, and drug release rate of both insulin-loaded nanocarriers over native insulin with the superiority of chitosan-coated SLNs. Cell-line studies on human nasal epithelial and brain endothelial cells proved the safety IN applicability of nanoparticles. Insulin-loaded nanoparticles showed improved insulin permeability through the nasal mucosa, which was promoted by chitosan-coating. However, native insulin exceeded the blood-brain barrier (BBB) permeation compared with nanoparticulate formulations. Encapsulating insulin into chitosan-coated NPs can be beneficial for ensuring structural stability, enhancing nasal absorption, followed by sustained drug release.


Asunto(s)
Encéfalo/citología , Quitosano/química , Insulina/farmacología , Nariz/citología , Encéfalo/metabolismo , Línea Celular , Liberación de Fármacos , Células Endoteliales/química , Células Endoteliales/citología , Insulina/química , Liposomas/química , Nanopartículas/química , Nariz/química , Tamaño de la Partícula , Ácido Poliglicólico/química
4.
Pharmaceutics ; 14(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35056983

RESUMEN

Nanosized drug delivery systems targeting transporters of the blood-brain barrier (BBB) are promising carriers to enhance the penetration of therapeutics into the brain. The expression of solute carriers (SLC) is high and shows a specific pattern at the BBB. Here we show that targeting ligands ascorbic acid, leucine and glutathione on nanoparticles elevated the uptake of albumin cargo in cultured primary rat brain endothelial cells. Moreover, we demonstrated the ability of the triple-targeted nanovesicles to deliver their cargo into midbrain organoids after crossing the BBB model. The cellular uptake was temperature- and energy-dependent based on metabolic inhibition. The process was decreased by filipin and cytochalasin D, indicating that the cellular uptake of nanoparticles was partially mediated by endocytosis. The uptake of the cargo encapsulated in triple-targeted nanoparticles increased after modification of the negative zeta potential of endothelial cells by treatment with a cationic lipid or after cleaving the glycocalyx with an enzyme. We revealed that targeted nanoparticles elevated plasma membrane fluidity, indicating the fusion of nanovesicles with endothelial cell membranes. Our data indicate that labeling nanoparticles with three different ligands of multiple transporters of brain endothelial cells can promote the transfer and delivery of molecules across the BBB.

5.
Pharmaceutics ; 12(7)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645904

RESUMEN

Inefficient drug delivery across the blood-brain barrier (BBB) and into target cells in the brain hinders the treatment of neurological diseases. One strategy to increase the brain penetration of drugs is to use vesicular nanoparticles functionalized with multiple ligands of BBB transporters as vehicles. Once within the brain, however, drugs must also be able to reach their therapeutic targets in the different cell types. It is, therefore, favorable if such nanocarriers are designed that can deliver their cargo not only to brain endothelial cells, but to other cell types as well. Here, we show that alanineglutathione dual-targeting of niosomes enhances the delivery of a large protein cargo into cultured cells of the neurovascular unit, namely brain endothelial cells, pericytes, astrocytes and neurons. Furthermore, using metabolic and endocytic inhibitors, we show that the cellular uptake of niosomes is energy-dependent and is partially mediated by endocytosis. Finally, we demonstate the ability of our targeted nanovesicles to deliver their cargo into astroglial cells after crossing the BBB in vitro. These data indicate that dual-labeling of nanoparticles with alanine and glutathione can potentially be exploited to deliver drugs, even biopharmacons, across the BBB and into multiple cell types in the brain.

6.
Pharmaceutics ; 13(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383743

RESUMEN

Pharmacological treatment of central nervous system (CNS) disorders is difficult, because the blood-brain barrier (BBB) restricts the penetration of many drugs into the brain. To solve this unmet therapeutic need, nanosized drug carriers are the focus of research efforts to develop drug delivery systems for the CNS. For the successful delivery of nanoparticles (NPs) to the brain, targeting ligands on their surface is necessary. Our research aim was to design a nanoscale drug delivery system for a more efficient transfer of donepezil, an anticholinergic drug in the therapy of Alzheimer's disease across the BBB. Rhodamine B-labeled solid lipid nanoparticles with donepezil cargo were prepared and targeted with apolipoprotein E (ApoE), a ligand of BBB receptors. Nanoparticles were characterized by measurement of size, polydispersity index, zeta potential, thermal analysis, Fourier-transform infrared spectroscopy, in vitro release, and stability. Cytotoxicity of nanoparticles were investigated by metabolic assay and impedance-based cell analysis. ApoE-targeting increased the uptake of lipid nanoparticles in cultured brain endothelial cells and neurons. Furthermore, the permeability of ApoE-targeted nanoparticles across a co-culture model of the BBB was also elevated. Our data indicate that ApoE, which binds BBB receptors, can potentially be exploited for successful CNS targeting of solid lipid nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...