Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37531237

RESUMEN

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Proteína Fosfatasa 1/genética , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Glucosa , Glucógeno , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/complicaciones
2.
JIMD Rep ; 45: 9-20, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30209782

RESUMEN

Ganglioside GM3 synthase is a key enzyme involved in the biosynthesis of gangliosides. GM3 synthase deficiency (GM3D) causes an absence of GM3 and all downstream biosynthetic derivatives. The affected individuals manifest with severe irritability, intractable seizures, and profound intellectual disability. The current study is to assess the effects of an oral ganglioside supplement to patients with GM3D, particularly on their growth and development during early childhood. A total of 13 young children, 11 of them under 40 months old, received oral ganglioside supplement through a dairy product enriched in gangliosides, for an average of 34 months. Clinical improvements were observed in most children soon after the supplement was initiated. Significantly improved growth and development were documented in these subjects as average percentiles for weight, height, and occipitofrontal circumference increased in 1-2 months. Three children with initial microcephaly demonstrated significant catch-up head growth and became normocephalic. We also illustrated brief improvements in developmental and cognitive scores, particularly in communication and socialization domains through Vineland-II. However, all improvements seemed transient and gradually phased out after 12 months of supplementation. Gangliosides GM1 and GM3, although measureable in plasma during the study, were not significantly changed with ganglioside supplementation for up to 30 months. We speculate that the downstream metabolism of ganglioside biosynthesis is fairly active and the potential need for gangliosides in the human body is likely substantial. As we search for new effective therapies for GM3D, approaches to reestablish endogenous ganglioside supplies in the affected individuals should be considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...