Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 14(1): 5986, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794031

RESUMEN

Engineering human tissue with diverse cell types and architectures remains challenging. The cerebral cortex, which has a layered cellular architecture composed of layer-specific neurons organised into vertical columns, delivers higher cognition through intricately wired neural circuits. However, current tissue engineering approaches cannot produce such structures. Here, we use a droplet printing technique to fabricate tissues comprising simplified cerebral cortical columns. Human induced pluripotent stem cells are differentiated into upper- and deep-layer neural progenitors, which are then printed to form cerebral cortical tissues with a two-layer organization. The tissues show layer-specific biomarker expression and develop a structurally integrated network of processes. Implantation of the printed cortical tissues into ex vivo mouse brain explants results in substantial structural implant-host integration across the tissue boundaries as demonstrated by the projection of processes and the migration of neurons, and leads to the appearance of correlated Ca2+ oscillations across the interface. The presented approach might be used for the evaluation of drugs and nutrients that promote tissue integration. Importantly, our methodology offers a technical reservoir for future personalized implantation treatments that use 3D tissues derived from a patient's own induced pluripotent stem cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Ratones , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Corteza Cerebral , Neuronas/fisiología , Encéfalo , Ingeniería de Tejidos/métodos , Impresión Tridimensional , Andamios del Tejido
3.
Dev Neurosci ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37302394

RESUMEN

Antidepressants in general, and fluoxetine in particular, increase adult hippocampal neurogenesis (AHN) in mice. Here we asked how the antidepressant fluoxetine affects behavior and AHN in a corticosterone model of depression. In three groups of adult male C57BL/6j mice we administered either vehicle (VEH), corticosterone (CORT) treatment to induce a depression-like state or corticosterone plus a standard dose of fluoxetine (CORT+FLX). Following treatment, mice performed the open field test, the novelty suppressed feeding (NSF) test and the splash test. Neurogenesis was assessed by means of immunohistochemistry using BrdU and neuronal maturation markers. Unexpectedly, 42% of the CORT+FLX-treated mice exhibited severe weight loss, seizures and sudden death. As expected, the CORT treated group had altered behaviors compared to the VEH group, but the CORT+FLX mice that survived did not show any behavioral improvement compared to the CORT group. Antidepressants generally increase neurogenesis and here we also found that compared to CORT mice, CORT+FLX mice that survived had a significantly greater density of BrdU+, BrdU+DCX+ and BrdU+NeuN+ cells, suggesting increased neurogenesis. Moreover, the density of BrdU+NeuN+ cells was increased in an aberrant location, the hilus, of CORT+FLX mice, similar to previous studies describing aberrant neurogenesis following seizures. In conclusion, fluoxetine could induce considerable adverse effects in wild type mice, including seizure-like activity. Fluoxetine-induced neurogenesis increases could be related to this activity, therefore proneurogenic effects of fluoxetine and other antidepressants, especially in the absence of any behavioral therapeutic effects, should be interpreted with caution.

4.
Proc Natl Acad Sci U S A ; 120(21): e2218478120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192167

RESUMEN

Aneuploidy syndromes impact multiple organ systems but understanding of tissue-specific aneuploidy effects remains limited-especially for the comparison between peripheral tissues and relatively inaccessible tissues like brain. Here, we address this gap in knowledge by studying the transcriptomic effects of chromosome X, Y, and 21 aneuploidies in lymphoblastoid cell lines, fibroblasts and iPSC-derived neuronal cells (LCLs, FCL, and iNs, respectively). We root our analyses in sex chromosome aneuploidies, which offer a uniquely wide karyotype range for dosage effect analysis. We first harness a large LCL RNA-seq dataset from 197 individuals with one of 6 sex chromosome dosages (SCDs: XX, XXX, XY, XXY, XYY, and XXYY) to i) validate theoretical models of SCD sensitivity and ii) define an expanded set of 41 genes that show obligate dosage sensitivity to SCD and are all in cis (i.e., reside on the X or Y chromosome). We then use multiple complementary analyses to show that cis effects of SCD in LCLs are preserved in both FCLs (n = 32) and iNs (n = 24), whereas trans effects (i.e., those on autosomal gene expression) are mostly not preserved. Analysis of additional datasets confirms that the greater cross-cell type reproducibility of cis vs. trans effects is also seen in trisomy 21 cell lines. These findings i) expand our understanding of X, Y, and 21 chromosome dosage effects on human gene expression and ii) suggest that LCLs may provide a good model system for understanding cis effects of aneuploidy in harder-to-access cell types.


Asunto(s)
Aneuploidia , Síndrome de Down , Humanos , Reproducibilidad de los Resultados , Síndrome de Down/genética , Cromosomas Sexuales , Expresión Génica
5.
Cell Death Dis ; 14(2): 84, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746936

RESUMEN

Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Represoras/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Linfocitos T CD8-positivos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/genética , Enfermedades Autoinmunes/genética , Línea Celular Tumoral
6.
Stem Cell Reports ; 18(1): 354-376, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36525965

RESUMEN

Long non-coding RNA (lncRNA) function is mediated by the process of transcription or through transcript-dependent associations with proteins or nucleic acids to control gene regulatory networks. Many lncRNAs are transcribed in the ventricular-subventricular zone (V-SVZ), a postnatal neural stem cell niche. lncRNAs in the V-SVZ are implicated in neurodevelopmental disorders, cancer, and brain disease, but their functions are poorly understood. V-SVZ neurogenesis capacity declines with age due to stem cell depletion and resistance to neural stem cell activation. Here we analyzed V-SVZ transcriptomics by pooling current single-cell RNA-seq data. They showed consistent lncRNA expression during stem cell activation, lineage progression, and aging. In conjunction with epigenetic and genetic data, we predicted V-SVZ lncRNAs that regulate stem cell activation and differentiation. Some of the lncRNAs validate known epigenetic mechanisms, but most remain uninvestigated. Our analysis points to several lncRNAs that likely participate in key aspects of V-SVZ stem cell activation and neurogenesis in health and disease.


Asunto(s)
Células-Madre Neurales , ARN Largo no Codificante , Ventrículos Laterales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcriptoma , Células-Madre Neurales/metabolismo , Diferenciación Celular/genética , Neurogénesis/genética
8.
Cereb Cortex ; 32(14): 3057-3067, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35029646

RESUMEN

The mouse subventricular zone (SVZ) produces neurons throughout life. It is useful for mechanism discovery and is relevant for regeneration. However, the SVZ is deep, significantly restricting live imaging since current methods do not extend beyond a few hundred microns. We developed and adapted three-photon microscopy (3PM) for non-invasive deep brain imaging in live mice, but its utility in imaging the SVZ niche was unknown. Here, with fluorescent dyes and genetic labeling, we show successful 3PM imaging in the whole SVZ, extending to a maximum depth of 1.5 mm ventral to the dura mater. 3PM imaging distinguished multiple SVZ cell types in postnatal and juvenile mice. We also detected fine processes on neural stem cells interacting with the vasculature. Previous live imaging removed overlying cortical tissue or lowered lenses into the brain, which could cause inflammation and alter neurogenesis. We found that neither astrocytes nor microglia become activated in the SVZ, suggesting 3PM does not induce major damage in the niche. Thus, we show for the first time 3PM imaging of the SVZ in live mice. This strategy could be useful for intravital visualization of cell dynamics, molecular, and pathological perturbation and regenerative events.


Asunto(s)
Ventrículos Laterales , Células-Madre Neurales , Animales , Microscopía Intravital , Ventrículos Laterales/diagnóstico por imagen , Ventrículos Laterales/metabolismo , Ratones , Microscopía , Células-Madre Neurales/fisiología , Neurogénesis/fisiología
9.
Cells ; 10(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34831271

RESUMEN

Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.


Asunto(s)
Galectina 3/metabolismo , Enfermedades del Sistema Nervioso/patología , Neurogénesis , Animales , Encéfalo/metabolismo , Encéfalo/patología , COVID-19/metabolismo , COVID-19/patología , Movimiento Celular , Galectina 3/química , Galectina 3/genética , Humanos , Inflamación , Ventrículos Laterales/citología , Ventrículos Laterales/crecimiento & desarrollo , Ventrículos Laterales/patología , Enfermedades del Sistema Nervioso/metabolismo , Células-Madre Neurales/citología , Transducción de Señal
10.
WIREs Mech Dis ; 13(6): e1526, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34730290

RESUMEN

Postnatal and adult neurogenesis in the subventricular zone and subgranular zone of animals such as rodents and non-human primates has been observed with many different technical approaches. Since most techniques used in animals cannot be used in humans, the majority of human neurogenesis studies rely on postmortem immunohistochemistry. This technique is difficult in human tissue, due to poor and variable preservation of antigens and samples. Nevertheless, a survey of the literature reveals that most published studies provide evidence for childhood and adult neurogenesis in the human brain stem cell niches. There are some conflicting results even when assessing the same markers and when using the same antibodies. Focusing on immunohistochemical studies on post-mortem human sections, we discuss the relative robustness of the literature on adult neurogenesis. We also discuss the response of the subventricular and subgranular zones to human disease, showing that the two niches can respond differently and that the stage of disease impacts neurogenesis levels. Thus, we highlight strong evidence for adult human neurogenesis, discuss other work that did not find it, describe obstacles in analysis, and offer other approaches to evaluate the neurogenic potential of the subventricular and subgranular zones of Homo sapiens. This article is categorized under: Neurological Diseases > Stem Cells and Development Reproductive System Diseases > Stem Cells and Development.


Asunto(s)
Células-Madre Neurales , Animales , Encéfalo , Niño , Humanos , Inmunohistoquímica , Ventrículos Laterales , Neurogénesis
11.
Aging (Albany NY) ; 13(14): 18131-18149, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34319910

RESUMEN

In recent years, the number of patients with neurodegenerative illness such as Alzheimer's disease (AD) has increased with the aging of the population. In this study, we evaluated the effect of Grape skin extract (GSE) on neurotypic SH-SY5Y cells as an in vitro AD model, murine neurospheres as an ex vivo neurogenesis model and SAMP8 mice as an in vivo AD model. Our in vitro result showed that pre-treatment of SH-SY5Y cells with GSE ameliorated Aß-induced cytotoxicity. Moreover, GSE treatment significantly decreased the number of neurospheres, but increased their size suggesting reduced stem cell self-renewal but increased proliferation. Our in vivo Morris water maze test indicated that GSE improves learning and memory in SAMP8 mice. To detect proliferation and newborn neurons, we measured BrdU+ cells in the dentate gyrus (DG). GSE treatment increased the number of BrdU+ cells in the DG of SAMP8 mice. Finally, we showed that GSE induced a decrease in inflammatory cytokines and an increase in neurotransmitters in the cerebral cortex of SAMP8 mice. These results suggested that GSE increased neurogenic zone proliferation and memory but decreased oxidative stress associated with pro-inflammatory cytokines in aging, thus protecting neurons.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Proliferación Celular/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Extractos Vegetales/farmacología , Aprendizaje Espacial/efectos de los fármacos , Enfermedad de Alzheimer/patología , Animales , Conducta Animal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Estrés Oxidativo , Vitis/química
12.
Front Neuroanat ; 14: 581685, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281566

RESUMEN

Schizophrenia (SCH) and autism spectrum disorder (ASD) share several common aetiological and symptomatic features suggesting they may be included in a common spectrum. For example, recent results suggest that excitatory/inhibitory imbalance is relevant in the etiology of SCH and ASD. Numerous studies have investigated this imbalance in regions like the ventromedial and dorsolateral prefrontal cortex (DLPFC). However, relatively little is known about neuroanatomical changes that could reduce inhibition in subcortical structures, such as the caudate nucleus (CN), in neuropsychiatric disorders. We recently showed a significant decrease in calretinin-immunopositive (CR-ip) interneuronal density in the CN of patients with ASD without significant change in the density of neuropeptide Y-immunopositive (NPY-ip) neurons. These subtypes together constitute more than 50% of caudate interneurons and are likely necessary for maintaining excitatory/inhibitory balance. Consequently, and since SCH and ASD share characteristic features, here we tested the hypothesis, that the density of CR-ip neurons in the CN is decreased in patients with SCH. We used immunohistochemistry and qPCR for CR and NPY in six patients with schizophrenia and six control subjects. As expected, small, medium and large CR-ip interneurons were detected in the CN. We found a 38% decrease in the density of all CR-ip interneurons (P < 0.01) that was driven by the loss of the small CR-ip interneurons (P < 0.01) in patients with SCH. The densities of the large CR-ip and of the NPY-ip interneurons were not significantly altered. The lower density detected could have been due to inflammation-induced degeneration. However, the state of microglial activation assessed by quantification of ionized calcium-binding adapter molecule 1 (Iba1)- and transmembrane protein 119 (TMEM119)-immunopositive cells showed no significant difference between patients with SCH and controls. Our results warrant further studies focussing on the role of CR-ip neurons and on the striatum being a possible hub for information selection and regulation of associative cortical fields whose function have been altered in SCH.

13.
Front Cell Dev Biol ; 8: 573487, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123536

RESUMEN

Age-related biological alterations in brain function increase the risk of mild cognitive impairment and dementia, a global problem exacerbated by aging populations in developed nations. Limited pharmacological therapies have resulted in attention turning to the promising role of medicinal plants and dietary supplements in the treatment and prevention of dementia. Sugarcane (Saccharum officinarum L.) top, largely considered as a by-product because of its low sugar content, in fact contains the most abundant amounts of antioxidant polyphenols relative to the rest of the plant. Given the numerous epidemiological studies on the effects of polyphenols on cognitive function, in this study, we analyzed polyphenolic constituents of sugarcane top and examined the effect of sugarcane top ethanolic extract (STEE) on a range of central nervous system functions in vitro and in vivo. Orally administrated STEE rescued spatial learning and memory deficit in the senescence-accelerated mouse prone 8 (SAMP8) mice, a non-transgenic strain that spontaneously develops a multisystemic aging phenotype including pathological features of Alzheimer's disease. This could be correlated with an increased number of hippocampal newborn neurons and restoration of cortical monoamine levels in STEE-fed SAMP8 mice. Global genomic analysis by microarray in cerebral cortices showed multiple potential mechanisms for the cognitive improvement. Gene set enrichment analysis (GSEA) revealed biological processes such as neurogenesis, neuron differentiation, and neuron development were significantly enriched in STEE-fed mice brain compared to non-treated SAMP8 mice. Furthermore, STEE treatment significantly regulated genes involved in neurotrophin signaling, glucose metabolism, and neural development in mice brain. Our in vitro results suggest that STEE treatment enhances the metabolic activity of neuronal cells promoting glucose metabolism with significant upregulation of genes, namely PGK1, PGAM1, PKM, and PC. STEE also stimulated proliferation of human neural stem cells (hNSCs), regulated bHLH factor expression and induced neuronal differentiation and astrocytic process lengthening. Altogether, our findings suggest the potential of STEE as a dietary intervention, with promising implications as a novel nutraceutical for cognitive health.

14.
Stem Cell Reports ; 15(3): 789-802, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32763162

RESUMEN

The subventricular zone of the mammalian brain is the major source of adult born neurons. These neuroblasts normally migrate long distances to the olfactory bulbs but can be re-routed to locations of injury and promote neuroregeneration. Mechanistic understanding and pharmacological targets regulating neuroblast migration is sparse. Furthermore, lack of migration assays limits development of pharmaceutical interventions targeting neuroblast recruitment. We therefore developed a physiologically relevant 3D neuroblast spheroid migration assay that permits the investigation of large numbers of interventions. To verify the assay, 1,012 kinase inhibitors were screened for their effects on migration. Several induced significant increases or decreases in migration. MuSK and PIK3CB were selected as putative targets and their knockdown validated increased neuroblast migration. Thus, compounds identified through this assay system could be explored for their potential in augmenting neuroblast recruitment to sites of injury for neuroregeneration, or for decreasing malignant invasion.


Asunto(s)
Bioensayo/métodos , Movimiento Celular , Neuronas/citología , Esferoides Celulares/citología , Animales , Automatización , Movimiento Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Colorantes Fluorescentes/metabolismo , Técnicas de Silenciamiento del Gen , Procesamiento de Imagen Asistido por Computador , Ventrículos Laterales/citología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/metabolismo , Reproducibilidad de los Resultados , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Imagen de Lapso de Tiempo
15.
Acta Biomater ; 112: 122-135, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32512215

RESUMEN

Stem cells can provide neuro-protection and potentially neuro-replacement to patients suffering from traumatic brain injuries (TBI), with a practical option being delivery via engineered scaffolds. Collagen (Coll) and glycosaminoglycan (GAG) have been used as scaffolds for brain tissue engineering yet they often do not support cell differentiation and survival. In this study, we developed interpenetrating polymer network scaffolds comprising Coll, and incorporating two commonly found GAGs in the brain, chondroitin sulfate (CS) and/or hyaluronic acid (HA). We seeded these scaffolds with mouse neural stem cells from the subventricular zone (SVZ) niche. Compared to Coll-alone, all other substrates decreased the percent of nestin+ stem cells. Coll-CS-HA was more efficient at suppressing nestin expression than the other scaffolds; all SVZ cells lost nestin expression within 7 days of culture. In contrast to nestin, the percentage of microtubule associated protein 2 (MAP2+) neurons was greater in scaffolds containing, CS, HA or CS-HA, compared to Coll alone. Finally, Coll-CS increased the percentage of glial fibrillary acidic protein (GFAP+) astrocytes compared to Coll scaffolds. Overall, this work shows that Coll-HA and Coll-CS-HA scaffolds selectively enhance neurogenesis and may be advantageous in tissue engineering therapy for TBI. STATEMENT OF SIGNIFICANCE: Brain injury is devastating yet with few options for repair. Stem cells that reside in the subventricular zone (SVZ) only repair damage inefficiently due to poor control of their cellular progeny and unsuitable extracellular matrix substrates. To solve these problems, we have systematically generated collagen (Coll) scaffolds with interpenetrating polymer networks (IPN) of hyaluronic acid (HA) or chondroitin sulfate proteoglycans (CS) or both. The scaffolds had defined pore sizes, similar mechanical properties and all three stimulated neurogenesis, whereas only CS stimulated astrocyte genesis. Overall, this work suggests that Coll-HA and Coll-CS-HA scaffolds selectively enhance neurogenesis and may be advantageous in tissue engineering therapy for brain repair.


Asunto(s)
Sulfatos de Condroitina , Ingeniería de Tejidos , Animales , Encéfalo , Células Cultivadas , Colágeno , Humanos , Ácido Hialurónico , Ratones , Polímeros , Andamios del Tejido
16.
Adv Mater ; 32(31): e2002183, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32537827

RESUMEN

Current understanding of human brain development is rudimentary due to suboptimal in vitro and animal models. In particular, how initial cell positions impact subsequent human cortical development is unclear because experimental spatial control of cortical cell arrangement is technically challenging. 3D cell printing provides a rapid customized approach for patterning. However, it has relied on materials that do not represent the extracellular matrix (ECM) of brain tissue. Therefore, in the present work, a lipid-bilayer-supported printing technique is developed to 3D print human cortical cells in the soft, biocompatible ECM, Matrigel. Printed human neural stem cells (hNSCs) show high viability, neural differentiation, and the formation of functional, stimulus-responsive neural networks. By using prepatterned arrangements of neurons and astrocytes, it is found that hNSC process outgrowth and migration into cell-free matrix and into astrocyte-containing matrix are similar in extent. However, astrocytes enhance the later developmental event of axon bundling. Both young and mature neurons migrate into compartments containing astrocytes; in contrast, astrocytes do not migrate into neuronal domains signifying nonreciprocal chemorepulsion. Therefore, precise prepatterning by 3D printing allows the construction of natural and unnatural patterns that yield important insights into human cerebral cortex development.


Asunto(s)
Bioimpresión , Corteza Cerebral/crecimiento & desarrollo , Membrana Dobles de Lípidos/química , Ingeniería de Tejidos , Astrocitos/citología , Astrocitos/metabolismo , Diferenciación Celular , Movimiento Celular , Colágeno/química , Combinación de Medicamentos , Matriz Extracelular/química , Humanos , Laminina/química , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Impresión Tridimensional , Proteoglicanos/química , Andamios del Tejido/química
17.
Stem Cells ; 38(9): 1149-1158, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32442340

RESUMEN

Postnatal subventricular zone (pSVZ) stem and progenitor cell proliferation is regulated by several developmental signaling pathways such as Wnt/ß-catenin. However, the molecular regulation of Wnt function in the pSVZ is poorly understood. We previously showed that Wnt signaling is upregulated in an SVZ gliomagenesis in vivo model. As well, the pro-inflammatory molecule Galectin-3 (Gal-3) increases Wnt signaling in cancer cells and is expressed in the SVZ. Therefore, we asked if Gal-3 has a similar function on Wnt signaling in the pSVZ. We interrogated Wnt signaling using a signaling reporter as well as immunohistochemistry and showed that Wnt signaling predominates upstream in the pSVZ lineage but is downregulated in migrating neuroblasts. Biochemical analysis of SVZ cells, in vivo and in neurosphere stem/progenitor cells, showed that Gal-3 physically interacts with multiple forms of ß-catenin, which is a major downstream regulator of Wnt signaling. Functional analyses demonstrated, in vitro and in vivo, that Gal-3 knockdown increases Wnt signaling and conversely that Gal-3 OE inhibits Wnt/ß-catenin signaling in the pSVZ. This latter result suggested that Gal-3, which is consistently increased in brain injury, may decrease pSVZ proliferation. We showed that Gal-3 OE decreased proliferation without altering cell cycle re-entry and that it increased p27Kip1, a molecule which induces cell cycle exit. Our data uncover a novel regulator of Wnt signaling in the SVZ, Gal-3, which does so in a manner opposite to cancer.


Asunto(s)
Galectina 3/metabolismo , Ventrículos Laterales/metabolismo , Vía de Señalización Wnt , Animales , Ciclo Celular , Linaje de la Célula , Proliferación Celular , Regulación hacia Abajo , Ratones Endogámicos C57BL , Unión Proteica , Nicho de Células Madre , beta Catenina/metabolismo
18.
Front Cell Dev Biol ; 8: 600575, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33634096

RESUMEN

Much attention has recently been focused on nutraceuticals, with minimal adverse effects, developed for preventing or treating neurological diseases such as Alzheimer's disease (AD). The present study was conducted to investigate the potential effect on neural development and function of the microalgae Aurantiochytrium sp. as a nutraceutical. To test neuroprotection by the ethanol extract of Aurantiochytrium (EEA) and a derivative, the n-Hexane layer of EEA (HEEA), amyloid-ß-stimulated SH-SY5Y cells, was used as an in vitro AD model. We then assessed the potential enhancement of neurogenesis by EEA and HEEA using murine ex vivo neurospheres. We also administered EEA or HEEA to senescence-accelerated mouse-prone 8 (SAMP8) mice, a non-transgenic strain with accelerated aging and AD-like memory loss for evaluation of spatial learning and memory using the Morris water maze test. Finally, we performed immunohistochemical analysis for assessment of neurogenesis in mice administered EEA. Pretreatment of SH-SY5Y cells with EEA or the squalene-rich fraction of EEA, HEEA, ameliorated amyloid-ß-induced cytotoxicity. Interestingly, only EEA-treated cells showed a significant increase in cell metabolism and intracellular adenosine triphosphate production. Moreover, EEA treatment significantly increased the number of neurospheres, whereas HEEA treatment significantly increased the number of ß-III-tubulin+ young neurons and GFAP+ astrocytes. SAMP8 mice were given 50 mg/kg EEA or HEEA orally for 30 days. EEA and HEEA decreased escape latency in the Morris water maze in SAMP8 mice, indicating improved memory. To detect stem cells and newborn neurons, we administered BrdU for 9 days and measured BrdU+ cells in the dentate gyrus, a neurogenic stem cell niche of the hippocampus. In SAMP8 mice, EEA rapidly and significantly increased the number of BrdU+GFAP+ stem cells and their progeny, BrdU+NeuN+ mature neurons. In conclusion, our data in aggregate indicate that EEA and its constituents could be developed into a nutraceutical for promoting brain health and function against several age-related diseases, particularly AD.

19.
Glia ; 68(2): 435-450, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31626379

RESUMEN

Postnatal subventricular zone (SVZ) neural stem cells generate forebrain glia, namely astrocytes and oligodendrocytes. The cues necessary for this process are unclear, despite this phase of brain development being pivotal in forebrain gliogenesis. Galectin-3 (Gal-3) is increased in multiple brain pathologies and thereby regulates astrocyte proliferation and inflammation in injury. To study the function of Gal-3 in inflammation and gliogenesis, we carried out functional studies in mouse. We overexpressed Gal-3 with electroporation and using immunohistochemistry surprisingly found no inflammation in the healthy postnatal SVZ. This allowed investigation of inflammation-independent effects of Gal-3 on gliogenesis. Loss of Gal-3 function via knockdown or conditional knockout reduced gliogenesis, whereas Gal-3 overexpression increased it. Gal-3 overexpression also increased the percentage of striatal astrocytes generated by the SVZ but decreased the percentage of oligodendrocytes. These novel findings were further elaborated with multiple analyses demonstrating that Gal-3 binds to the bone morphogenetic protein receptor one alpha (BMPR1α) and increases bone morphogenetic protein (BMP) signaling. Conditional knockout of BMPR1α abolished the effect of Gal-3 overexpression on gliogenesis. Gain-of-function of Gal-3 is relevant in pathological conditions involving the human forebrain, which is particularly vulnerable to hypoxia/ischemia during perinatal gliogenesis. Hypoxic/ischemic injury induces astrogliosis, inflammation and cell death. We show that Gal-3 immunoreactivity was increased in the perinatal human SVZ and striatum after hypoxia/ischemia. Our findings thus show a novel inflammation-independent function for Gal-3; it is necessary for gliogenesis and when increased in expression can induce astrogenesis via BMP signaling.


Asunto(s)
Astrocitos/metabolismo , Galectina 3/metabolismo , Ventrículos Laterales/citología , Neuroglía/metabolismo , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Ventrículos Cerebrales/citología , Regulación de la Expresión Génica , Isquemia/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Oligodendroglía/metabolismo
20.
Sci Rep ; 9(1): 11388, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388182

RESUMEN

The cation-independent mannose 6-phosphate/insulin-like growth factor-2 receptor (M6P/IGF2R or IGF2R) traffics IGF2 and M6P ligands between pre-lysosomal and extra-cellular compartments. Specific IGF2 and M6P high-affinity binding occurs via domain-11 and domains-3-5-9, respectively. Mammalian maternal Igf2r allele expression exceeds the paternal allele due to imprinting (silencing). Igf2r null-allele maternal transmission results in placenta and heart over-growth and perinatal lethality (>90%) due to raised extra-cellular IGF2 secondary to impaired ligand clearance. It remains unknown if the phenotype is due to either ligand alone, or to both ligands. Here, we evaluate Igf2r specific loss-of-function of the domain-11 IGF2 binding site by replacing isoleucine with alanine in the CD loop (exon 34, I1565A), a mutation also detected in cancers. Igf2rI1565A/+p maternal transmission (heterozygote), resulted in placental and embryonic over-growth with reduced neonatal lethality (<60%), and long-term survival. The perinatal mortality (>80%) observed in homozygotes (Igf2rI1565A/I1565A) suggested that wild-type paternal allele expression attenuates the heterozygote phenotype. To evaluate Igf2r tumour suppressor function, we utilised intestinal adenoma models known to be Igf2 dependent. Bi-allelic Igf2r expression suppressed intestinal adenoma (ApcMin). Igf2rI1565A/+p in a conditional model (Lgr5-Cre, Apcloxp/loxp) resulted in worse survival and increased adenoma proliferation. Growth, survival and intestinal adenoma appear dependent on IGF2R-domain-11 IGF2 binding.


Asunto(s)
Adenoma/genética , Trastornos del Crecimiento/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Neoplasias Intestinales/genética , Herencia Materna , Receptor IGF Tipo 2/genética , Adenoma/patología , Alelos , Animales , Proliferación Celular/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Embrión de Mamíferos/patología , Femenino , Impresión Genómica , Trastornos del Crecimiento/patología , Células HEK293 , Heterocigoto , Homocigoto , Humanos , Hiperplasia/patología , Neoplasias Intestinales/patología , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Transgénicos , Placenta/patología , Embarazo , Dominios Proteicos/genética , Receptor IGF Tipo 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...