Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(33): 13782-13794, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39101436

RESUMEN

The preparation of synthetic (Zr,U)SiO4 solid solution is challenging, as the conventional high-temperature solid-state method limits the solubility of uranium (4 ± 1 mol%) in the orthosilicate phase due to its thermodynamic instability. However, these compounds are of great interest as a result of (Zr,U)SiO4 solid solutions, with uranium contents exceeding this concentration, being observed as corium phases formed during nuclear accidents. It has been identified that hydrothermal synthesis pathways can be used for the formation of the metastable phase, such as USiO4. The investigation carried out in this study has indeed led to the confirmation of metastable (Zr,U)SiO4 compounds with high uranium contents being formed. It was found that (Zr,U)SiO4 forms a close-to-ideal solid solution with uranium loading of up to 60 mol% by means of hydrothermal treatment for 7 days at 250 °C, at pH = 3 and starting from an equimolar reactant concentration equal to 0.2 mol L-1. A purification procedure was developed to obtain pure silicate compounds. After purification, these compounds were found to be stable up to 1000 °C under an inert atmosphere (argon). The characterisation methods used to explore the synthesis and thermal stability included powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) and Raman spectroscopies, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA).

2.
Dalton Trans ; 53(5): 2252-2264, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38193888

RESUMEN

This work is the first attempt to prepare Nd1-xCaxUxPO4 monazite-cheralite with 0 < x ≤ 0.1 by a wet chemistry method. This method relies on the precipitation under hydrothermal conditions (T = 110 °C for four days) of the Nd1-xCaxUxPO4·nH2O rhabdophane precursor, followed by its thermal conversion for 6 h at 1100 °C in air or Ar atmosphere. The optimized synthesis protocol led to the incorporation of U and Ca in the rhabdophane structure. After heating at 1100 °C for 6 h in air, single-phase monazite-cheralite samples were obtained. However, α-UP2O7 was identified as a secondary minor phase in the samples heated under Ar atmosphere. The U speciation in the samples converted in an oxidising atmosphere was carefully characterized using synchrotron radiation by combining HERFD-XANES and XRD. These results showed the presence of a minor secondary phase containing hexavalent uranium and phosphate with a stoichiometry of U : P = 0.78. This highly labile uranyl phosphate phase incorporated 21 mol% of the uranium initially precipitated with the rhabdophane precursor. This phase was completely removed by a washing protocol. Thus, single-phase monazite-cheralite was obtained through the wet chemistry route described in this work with a maximum U loading of x = 0.08.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA