Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3417, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296110

RESUMEN

Long COVID or post-acute sequelae of SARS-CoV-2 (PASC) is a clinical syndrome featuring diverse symptoms that can persist for months following acute SARS-CoV-2 infection. The aetiologies may include persistent inflammation, unresolved tissue damage or delayed clearance of viral protein or RNA, but the biological differences they represent are not fully understood. Here we evaluate the serum proteome in samples, longitudinally collected from 55 PASC individuals with symptoms lasting ≥60 days after onset of acute infection, in comparison to samples from symptomatically recovered SARS-CoV-2 infected and uninfected individuals. Our analysis indicates heterogeneity in PASC and identified subsets with distinct signatures of persistent inflammation. Type II interferon signaling and canonical NF-κB signaling (particularly associated with TNF), appear to be the most differentially enriched signaling pathways, distinguishing a group of patients characterized also by a persistent neutrophil activation signature. These findings help to clarify biological diversity within PASC, identify participants with molecular evidence of persistent inflammation, and highlight dominant pathways that may have diagnostic or therapeutic relevance, including a protein panel that we propose as having diagnostic utility for differentiating inflammatory and non-inflammatory PASC.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , SARS-CoV-2 , Proteínas Sanguíneas , Progresión de la Enfermedad , Inflamación
2.
bioRxiv ; 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34075380

RESUMEN

SARS-CoV-2 has infected over 200 million and caused more than 4 million deaths to date. Most individuals (>80%) have mild symptoms and recover in the outpatient setting, but detailed studies of immune responses have focused primarily on moderate to severe COVID-19. We deeply profiled the longitudinal immune response in individuals with mild COVID-19 beginning with early time points post-infection (1-15 days) and proceeding through convalescence to >100 days after symptom onset. We correlated data from single cell analyses of peripheral blood cells, serum proteomics, virus-specific cellular and humoral immune responses, and clinical metadata. Acute infection was characterized by vigorous coordinated innate and adaptive immune activation that differed in character by age (young vs. old). We then characterized signals associated with recovery and convalescence to define and validate a new signature of inflammatory cytokines, gene expression, and chromatin accessibility that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC).

3.
J Mater Chem B ; 4(9): 1610-1618, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-27453783
4.
Sci Rep ; 5: 10276, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25999171

RESUMEN

B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to "professional" APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale "cell squeezing" process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8(+)T-cells, and not CD4(+)T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8(+)T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8(+)T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8(+)T-cells, and decoupling of antigen uptake from B-cell activation.


Asunto(s)
Antígenos/inmunología , Linfocitos B/inmunología , Vacunas/inmunología , Animales , Antígenos/metabolismo , Linfocitos B/citología , Linfocitos B/metabolismo , Antígeno B7-2/metabolismo , Antígenos CD40/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Técnicas de Cultivo de Célula , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Interferón gamma/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...