Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Toxics ; 11(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37888670

RESUMEN

Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000-2010, literature and aggregated data were collected in a harmonized way across studies. Between 2011-2012, biobanked samples from the DEMOCOPHES project were used. For 2014-2021, HBM data were generated within the HBM4EU Aligned Studies. Time patterns on internal exposure were evaluated visually and statistically using the 50th and 90th percentiles (P50/P90) for phthalates/DINCH and organophosphorus flame retardants (OPFRs) in children (5-12 years), and cadmium, bisphenols and polycyclic aromatic hydrocarbons (PAHs) in women (24-52 years). Restricted phthalate metabolites show decreasing patterns for children. Phthalate substitute, DINCH, shows a non-significant increasing pattern. For OPFRs, no trends were statistically significant. For women, BPA shows a clear decreasing pattern, while substitutes BPF and BPS show an increasing pattern coinciding with the BPA restrictions introduced. No clear patterns are observed for PAHs or cadmium. Although the causal relations were not studied as such, exposure levels to chemicals restricted at EU level visually decreased, while the levels for some of their substitutes increased. The results support policy efficacy monitoring and the policy-supportive role played by HBM.

2.
Int J Hyg Environ Health ; 251: 114170, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37207539

RESUMEN

Most countries have acknowledged the importance of assessing and quantifying their population's internal exposure from chemicals in air, water, soil, food and other consumer products due to the potential health and economic impact. Human biomonitoring (HBM) is a valuable tool which can be used to quantify such exposures and effects. Results from HBM studies can also contribute to improving public health by providing evidence of individuals' internal chemical exposure as well as data to understand the burden of disease and associated costs thereby stimulating the development and implementation of evidence-based policy. To have a holistic view on HBM data utilisation, a multi-case research approach was used to explore the use of HBM data to support national chemical regulations, protect public health and raise awareness among countries participating in the HBM4EU project. The Human Biomonitoring for Europe (HBM4EU) Initiative (https://www.hbm4eu.eu/) is a collaborative effort involving 30 countries, the European Environment Agency (EEA) and the European Commission (contracting authority) to harmonise procedures across Europe and advance research into the understanding of the health impacts of environmental chemical exposure. One of the aims of the project was to use HBM data to support evidence based chemical policy and make this information timely and directly available for policy makers and all partners. The main data source for this article was the narratives collected from 27 countries within the HBM4EU project. The countries (self-selection) were grouped into 3 categories in terms of HBM data usage either for public awareness, policy support or for the establishment HBM programme. Narratives were analysed/summarised using guidelines and templates that focused on ministries involved in or advocating for HBM; steps required to engage policy makers; barriers, drivers and opportunities in developing a HBM programme. The narratives reported the use of HBM data either for raising awareness or addressing environmental/public health issues and policy development. The ministries of Health and Environment were reported to be the most prominent entities advocating for HBM, the involvement of several authorities/institutions in the national hubs was also cited to create an avenue to interact, discuss and gain the attention of policy makers. Participating in European projects and the general population interest in HBM studies were seen as drivers and opportunities in developing HBM programmes. A key barrier that was cited by countries for establishing and sustaining national HBM programmes was funding which is mainly due to the high costs associated with the collection and chemical analysis of human samples. Although challenges and barriers still exist, most countries within Europe were already conversant with the benefits and opportunities of HBM. This article offers important insights into factors associated with the utilisation of HBM data for policy support and public awareness.


Asunto(s)
Monitoreo Biológico , Monitoreo del Ambiente , Humanos , Monitoreo del Ambiente/métodos , Salud Pública , Exposición a Riesgos Ambientales/análisis , Formulación de Políticas
3.
Int J Hyg Environ Health ; 249: 114101, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805185

RESUMEN

Phthalates are mainly used as plasticizers for polyvinyl chloride (PVC). Exposure to several phthalates is associated with different adverse effects most prominently on the development of reproductive functions. The HBM4EU Aligned Studies (2014-2021) have investigated current European exposure to ten phthalates (DEP, BBzP, DiBP, DnBP, DCHP, DnPeP, DEHP, DiNP, DiDP, DnOP) and the substitute DINCH to answer the open policy relevant questions which were defined by HBM4EU partner countries and EU institutions as the starting point of the programme. The exposure dataset includes ∼5,600 children (6-11 years) and adolescents (12-18 years) from up to 12 countries per age group and covering the North, East, South and West European regions. Study data from participating studies were harmonised with respect to sample size and selection of participants, selection of biomarkers, and quality and comparability of analytical results to provide a comparable perspective of European exposure. Phthalate and DINCH exposure were deduced from urinary excretions of metabolites, where concentrations were expressed as their key descriptor geometric mean (GM) and 95th percentile (P95). This study aims at reporting current exposure levels and differences in these between European studies and regions, as well as comparisons to human biomonitoring guidance values (HBM-GVs). GMs for children were highest for ∑DEHP metabolites (33.6 µg/L), MiBP (26.6 µg/L), and MEP (24.4 µg/L) and lowest for∑DiDP metabolites (1.91 µg/L) and ∑DINCH metabolites (3.57 µg/L). In adolescents highest GMs were found for MEP (43.3 µg/L), ∑DEHP metabolites (28.8 µg/L), and MiBP (25.6 µg/L) and lowest for ∑DiDP metabolites (= 2.02 µg/L) and ∑DINCH metabolites (2.51 µg/L). In addition, GMs and P95 stratified by European region, sex, household education level, and degree of urbanization are presented. Differences in average biomarker concentrations between sampling sites (data collections) ranged from factor 2 to 9. Compared to the European average, children in the sampling sites OCC (Denmark), InAirQ (Hungary), and SPECIMEn (The Netherlands) had the lowest concentrations across all metabolites and ESTEBAN (France), NAC II (Italy), and CROME (Greece) the highest. For adolescents, comparably higher metabolite concentrations were found in NEB II (Norway), PCB cohort (Slovakia), and ESTEBAN (France), and lower concentrations in POLAES (Poland), FLEHS IV (Belgium), and GerES V-sub (Germany). Multivariate analyses (Survey Generalized Linear Models) indicate compound-specific differences in average metabolite concentrations between the four European regions. Comparison of individual levels with HBM-GVs revealed highest rates of exceedances for DnBP and DiBP, with up to 3 and 5%, respectively, in children and adolescents. No exceedances were observed for DEP and DINCH. With our results we provide current, detailed, and comparable data on exposure to phthalates in children and - for the first time - in adolescents, and - for the first time - on DINCH in children and adolescents of all four regions of Europe which are particularly suited to inform exposure and risk assessment and answer open policy relevant questions.


Asunto(s)
Contaminantes Ambientales , Ácidos Ftálicos , Humanos , Niño , Adolescente , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Ácidos Ftálicos/metabolismo
4.
Int J Hyg Environ Health ; 247: 114073, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36434900

RESUMEN

Within the European Human Biomonitoring (HBM) Initiative HBM4EU we derived HBM indicators that were designed to help answering key policy questions and support chemical policies. The result indicators convey information on chemicals exposure of different age groups, sexes, geographical regions and time points by comparing median exposure values. If differences are observed for one group or the other, policy measures or risk management options can be implemented. Impact indicators support health risk assessment by comparing exposure values with health-based guidance values, such as human biomonitoring guidance values (HBM-GVs). In general, the indicators should be designed to translate complex scientific information into short and clear messages and make it accessible to policy makers but also to a broader audience such as stakeholders (e.g. NGO's), other scientists and the general public. Based on harmonized data from the HBM4EU Aligned Studies (2014-2021), the usefulness of our indicators was demonstrated for the age group children (6-11 years), using two case examples: one phthalate (Diisobutyl phthalate: DiBP) and one non-phthalate substitute (Di-isononyl cyclohexane-1,2- dicarboxylate: DINCH). For the comparison of age groups, these were compared to data for teenagers (12-18 years), and time periods were compared using data from the DEMOCOPHES project (2011-2012). Our result indicators proved to be suitable for demonstrating the effectiveness of policy measures for DiBP and the need of continuous monitoring for DINCH. They showed similar exposure for boys and girls, indicating that there is no need for gender focused interventions and/or no indication of sex-specific exposure patterns. They created a basis for a targeted approach by highlighting relevant geographical differences in internal exposure. An adequate data basis is essential for revealing differences for all indicators. This was particularly evident in our studies on the indicators on age differences. The impact indicator revealed that health risks based on exposure to DiBP cannot be excluded. This is an indication or flag for risk managers and policy makers that exposure to DiBP still is a relevant health issue. HBM indicators derived within HBM4EU are a valuable and important complement to existing indicator lists in the context of environment and health. Their applicability, current shortcomings and solution strategies are outlined.


Asunto(s)
Ácidos Ftálicos , Masculino , Niño , Femenino , Adolescente , Humanos , Políticas , Monitoreo Biológico , Ácidos Carboxílicos
5.
Int J Hyg Environ Health ; 248: 114105, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36563507

RESUMEN

Humans are exposed to a mixture of pesticides through diet as well as through the environment. We conducted a suspect-screening based study to describe the probability of (concomitant) exposure to a set of pesticide profiles in five European countries (Latvia, Hungary, Czech Republic, Spain and the Netherlands). We explored whether living in an agricultural area (compared to living in a peri-urban area), being a a child (compared to being an adult), and the season in which the urine sample was collected had an impact on the probability of detection of pesticides (-metabolites). In total 2088 urine samples were collected from 1050 participants (525 parent-child pairs) and analyzed through harmonized suspect screening by five different laboratories. Fourty pesticide biomarkers (either pesticide metabolites or the parent pesticides as such) relating to 29 pesticides were identified at high levels of confidence in samples across all study sites. Most frequently detected were biomarkers related to the parent pesticides acetamiprid and chlorpropham. Other biomarkers with high detection rates in at least four countries related to the parent pesticides boscalid, fludioxonil, pirimiphos-methyl, pyrimethanil, clothianidin, fluazifop and propamocarb. In 84% of the samples at least two different pesticides were detected. The median number of detected pesticides in the urine samples was 3, and the maximum was 13 pesticides detected in a single sample. The most frequently co-occurring substances were acetamiprid with chlorpropham (in 62 urine samples), and acetamiprid with tebuconazole (30 samples). Some variation in the probability of detection of pesticides (-metabolites) was observed with living in an agricultural area or season of urine sampling, though no consistent patterns were observed. We did observe differences in the probability of detection of a pesticide (metabolite) among children compared to adults, suggesting a different exposure and/or elimination patterns between adults and children. This survey demonstrates the feasibility of conducting a harmonized pan-European sample collection, combined with suspect screening to provide insight in the presence of exposure to pesticide mixtures in the European population, including agricultural areas. Future improvements could come from improved (harmonized) quantification of pesticide levels.


Asunto(s)
Plaguicidas , Adulto , Humanos , Plaguicidas/orina , Clorprofam , Agricultura , Europa (Continente) , Biomarcadores , Exposición a Riesgos Ambientales/análisis
7.
Front Pediatr ; 10: 921239, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275050

RESUMEN

Background: Mechanistic studies show that heavy metals interfere with the hematopoietic system by inhibiting key enzymes, which could lead to anemia. However, the link between children's exposure and red blood cell (RBC) parameters has been inconsistent. We aimed to summarize evidence on human studies exploring the association between exposure to lead, mercury, cadmium, arsenic, and chromium VI and RBC parameters in children. Methods: Following the PRISMA guidelines, we searched PubMed, Scopus, and Web of Science databases for studies published between January 2010 and April 2022. Eligible papers included human observational studies that directly assessed exposure (internal dose) to the heavy metals under study and RBC parameters in participants aged ≤ 18 years. We excluded studies using hospital-based samples. Study quality was assessed using the National Institutes of Health's Quality Assessment Tools for Cohort and Cross-Sectional Studies. We synthesized the evidence using vote counting based on the direction of the relationship. Results: Out of 6,652 retrieved papers, we included a total of 38 (33 assessing lead, four mercury, two cadmium, and two arsenic; chromium VI was not assessed in any included paper). More than half of the studies were conducted in Asia. We found evidence of a positive relationship between lead concentration and hemoglobin (proportion of studies reporting negative relationships = 0.750; 95% Confidence Interval (CI) 0.583, 0.874) and mean corpuscular hemoglobin (0.875; 95% CI 0.546, 0.986), and a positive relationship with red cell distribution width (0.000; 95%CI 0.000, 0.379). When considering only good-quality studies (24% of the Pb studies), only the relationship with hemoglobin levels remained (0.875; 95% CI: 0.546, 0.986). Conclusion: We found evidence of a negative relationship between lead concentration and hemoglobin and mean corpuscular hemoglobin and of a positive relationship with red cell distribution width in children. We also identified a need to conduct more studies in European countries. Future studies should use standardized practices and make efforts to increase study quality, namely by conducting comprehensive longitudinal studies. Our findings support the need to take further actions to limit heavy metal exposure during childhood.

8.
Environ Int ; 168: 107452, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35994799

RESUMEN

Within the Human Biomonitoring for Europe initiative (HBM4EU), a study to determine new biomarkers of exposure to pesticides and to assess exposure patterns was conducted. Human urine samples (N = 2,088) were collected from five European regions in two different seasons. The objective of the study was to identify pesticides and their metabolites in collected urine samples with a harmonized suspect screening approach based on liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) applied in five laboratories. A combined data processing workflow included comprehensive data reduction, correction of mass error and retention time (RT) drifts, isotopic pattern analysis, adduct and elemental composition annotation, finalized by a mining of the elemental compositions for possible annotations of pesticide metabolites. The obtained tentative annotations (n = 498) were used for acquiring representative data-dependent tandem mass spectra (MS2) and verified by spectral comparison to reference spectra generated from commercially available reference standards or produced through human liver S9 in vitro incubation experiments. 14 parent pesticides and 71 metabolites (including 16 glucuronide and 11 sulfate conjugates) were detected. Collectively these related to 46 unique pesticides. For the remaining tentative annotations either (i) no data-dependent MS2 spectra could be acquired, (ii) the spectral purity was too low for sufficient matching, or (iii) RTs indicated a wrong annotation, leaving potential for more pesticides and/or their metabolites being confirmed in further studies. Thus, the reported results are reflecting only a part of the possible pesticide exposure.

9.
Artículo en Inglés | MEDLINE | ID: mdl-35681998

RESUMEN

Exposure to different chemicals is an inevitable part of our everyday lives. Within HBM4EU, focus group discussions were conducted to gather data on citizens' perceptions of chemical exposure and human biomonitoring. These discussions were hosted in Cyprus, Denmark, Hungary, Israel, Latvia, the Netherlands, and North Macedonia following a protocol developed in the first round of discussions. Results indicate the very high concern of European citizens regarding food safety and the environment. Focus group participants were well aware of potential uptake of chemicals through food consumption (e.g., preservatives, flavor enhancers, coloring agents, pesticides, fertilizers, metals), drinking water, or from polluted air and water. One of the positive aspects identified here, is the high interest of citizens in awareness and education on personal measures to control exposure. The promotion of personal behavioral changes requires active involvement of society (e.g., commuting habits, energy choices, waste disposal, dietary habits). Activities should focus on raising awareness of the general public, implementation of policy measures, and mainstreaming of related topics into the education system. Raising awareness of the general public may promote engagement of citizens, which in turn may empower them to put pressure on politicians to take effective actions. There is also a need for further research which might focus on the impact of country-specific situations and of the COVID-19 pandemic on the exposure of citizens to chemicals.


Asunto(s)
Monitoreo Biológico , COVID-19 , COVID-19/epidemiología , Chipre , Humanos , Pandemias , Percepción
10.
Artículo en Inglés | MEDLINE | ID: mdl-35682369

RESUMEN

Human biomonitoring has become a pivotal tool for supporting chemicals' policies. It provides information on real-life human exposures and is increasingly used to prioritize chemicals of health concern and to evaluate the success of chemical policies. Europe has launched the ambitious REACH program in 2007 to improve the protection of human health and the environment. In October 2020 the EU commission published its new chemicals strategy for sustainability towards a toxic-free environment. The European Parliament called upon the commission to collect human biomonitoring data to support chemical's risk assessment and risk management. This manuscript describes the organization of the first HBM4EU-aligned studies that obtain comparable human biomonitoring (HBM) data of European citizens to monitor their internal exposure to environmental chemicals. The HBM4EU-aligned studies build on existing HBM capacity in Europe by aligning national or regional HBM studies. The HBM4EU-aligned studies focus on three age groups: children, teenagers, and adults. The participants are recruited between 2014 and 2021 in 11 to 12 primary sampling units that are geographically distributed across Europe. Urine samples are collected in all age groups, and blood samples are collected in children and teenagers. Auxiliary information on socio-demographics, lifestyle, health status, environment, and diet is collected using questionnaires. In total, biological samples from 3137 children aged 6-12 years are collected for the analysis of biomarkers for phthalates, HEXAMOLL® DINCH, and flame retardants. Samples from 2950 teenagers aged 12-18 years are collected for the analysis of biomarkers for phthalates, Hexamoll® DINCH, and per- and polyfluoroalkyl substances (PFASs), and samples from 3522 adults aged 20-39 years are collected for the analysis of cadmium, bisphenols, and metabolites of polyaromatic hydrocarbons (PAHs). The children's group consists of 50.4% boys and 49.5% girls, of which 44.1% live in cities, 29.0% live in towns/suburbs, and 26.8% live in rural areas. The teenagers' group includes 50.6% girls and 49.4% boys, with 37.7% of residents in cities, 31.2% in towns/suburbs, and 30.2% in rural areas. The adult group consists of 52.6% women and 47.4% men, 71.9% live in cities, 14.2% in towns/suburbs, and only 13.4% live in rural areas. The study population approaches the characteristics of the general European population based on age-matched EUROSTAT EU-28, 2017 data; however, individuals who obtained no to lower educational level (ISCED 0-2) are underrepresented. The data on internal human exposure to priority chemicals from this unique cohort will provide a baseline for Europe's strategy towards a non-toxic environment and challenges and recommendations to improve the sampling frame for future EU-wide HBM surveys are discussed.


Asunto(s)
Monitoreo Biológico , Contaminantes Ambientales , Adolescente , Adulto , Cadmio/análisis , Niño , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Europa (Continente) , Femenino , Humanos , Masculino , Medición de Riesgo
11.
Food Chem Toxicol ; 165: 113141, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35588984

RESUMEN

This manuscript describes the methodology for and early experience in the application of a screening tool to assess health risks from combined exposure to indoor air pollutants in public settings for children such as schools, kindergartens and day-care centres. The user-friendly tool incorporates tiers modified from those of the World Health Organization (WHO) framework for risk assessment of combined exposure to multiple chemicals and includes a spreadsheet for risk calculation as well as a supporting toxicological database of guidance values and points of departure (PODs) for inhalation for selected effects. Supporting resources on exposure assessment include a screening questionnaire to identify optimum sampling strategies and standardized analytical methods. The approach to assessment of combined exposure within the screening tool, including decision rules, assumptions and limitations/uncertainties is addressed, as is the nature of health-effects and reference/toxicity values prioritized for inclusion in the associated toxicological database. Results of early experience in application illustrate how the screening tool contributes as an important component in strategies to assess and manage indoor air pollution in public settings for children.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Niño , Monitoreo del Ambiente/métodos , Humanos , Medición de Riesgo , Instituciones Académicas
12.
Int J Hyg Environ Health ; 238: 113855, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34655857

RESUMEN

Lead (Pb) is a ubiquitous environmental pollutant and a potent toxic compound. Humans are exposed to Pb through inhalation, ingestion, and skin contact via food, water, tobacco smoke, air, dust, and soil. Pb accumulates in bones, brain, liver and kidney. Fetal exposure occurs via transplacental transmission. The most critical health effects are developmental neurotoxicity in infants and cardiovascular effects and nephrotoxicity in adults. Pb exposure has been steadily decreasing over the past decades, but there are few recent exposure data from the general European population; moreover, no safe Pb limit has been set. Sensitive biomarkers of exposure, effect and susceptibility, that reliably and timely indicate Pb-associated toxicity are required to assess human exposure-health relationships in a situation of low to moderate exposure. Therefore, a systematic literature review based on PubMed entries published before July 2019 that addressed Pb exposure and biomarkers of effect and susceptibility, neurodevelopmental toxicity, epigenetic modifications, and transcriptomics was conducted. Finally included were 58 original papers on Pb exposure and 17 studies on biomarkers. The biomarkers that are linked to Pb exposure and neurodevelopment were grouped into effect biomarkers (serum brain-derived neurotrophic factor (BDNF) and serum/saliva cortisol), susceptibility markers (epigenetic markers and gene sequence variants) and other biomarkers (serum high-density lipoprotein (HDL), maternal iron (Fe) and calcium (Ca) status). Serum BDNF and plasma HDL are potential candidates to be further validated as effect markers for routine use in HBM studies of Pb, complemented by markers of Fe and Ca status to also address nutritional interactions related to neurodevelopmental disorders. For several markers, a causal relationship with Pb-induced neurodevelopmental toxicity is likely. Results on BDNF are discussed in relation to Adverse Outcome Pathway (AOP) 13 ("Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities") of the AOP-Wiki. Further studies are needed to validate sensitive, reliable, and timely effect biomarkers, especially for low to moderate Pb exposure scenarios.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Plomo , Adulto , Biomarcadores , Factor Neurotrófico Derivado del Encéfalo/genética , Humanos , Lactante , Plomo/toxicidad , Aprendizaje , Saliva
13.
Artículo en Inglés | MEDLINE | ID: mdl-33535701

RESUMEN

Asthma is one of the most common chronic diseases worldwide affecting all age groups from children to the elderly. In addition to other factors such as smoking, air pollution and atopy, some environmental chemicals are shown or suspected to increase the risk of asthma, exacerbate asthma symptoms and cause other respiratory symptoms. In this scoping review, we report environmental chemicals, prioritized for investigation in the European Human Biomonitoring Initiative (HBM4EU), which are associated or possibly associated with asthma. The substance groups considered to cause asthma through specific sensitization include: diisocyanates, hexavalent chromium Cr(VI) and possibly p-phenylenediamine (p-PDA). In epidemiological studies, polyaromatic hydrocarbons (PAHs) and organophosphate insecticides are associated with asthma, and phthalates, per- and polyfluoroalkyl substances (PFASs), pyrethroid insecticides, mercury, cadmium, arsenic and lead are only potentially associated with asthma. As a conclusion, exposure to PAHs and some pesticides are associated with increased risk of asthma. Diisocyanates and Cr(VI) cause asthma with specific sensitization. For many environmental chemicals, current studies have provided contradicting results in relation to increased risk of asthma. Therefore, more research about exposure to environmental chemicals and risk of asthma is needed.


Asunto(s)
Arsénico , Asma , Contaminantes Ambientales , Hidrocarburos Aromáticos , Plaguicidas , Anciano , Asma/inducido químicamente , Asma/epidemiología , Monitoreo Biológico , Niño , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Contaminantes Ambientales/toxicidad , Humanos
14.
Indoor Air ; 31(4): 989-1003, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33615561

RESUMEN

The indoor air quality (IAQ) was investigated in sixty-four primary school buildings in five Central European countries (Czech Republic, Hungary, Italy, Poland, and Slovenia). The concentration of volatile organic compounds, aldehydes, PM2.5 mass, carbon dioxide, radon, as well as physical parameters were investigated during the heating period of 2017/2018. Significant differences were identified for the majority of the investigated IAQ parameters across the countries. The median indoor/outdoor ratios varied considerably. A comprehensive evaluation of IAQ in terms of potential health effects and comfort perception was performed. Hazard quotient values were below the threshold value of 1 with one exception. In contrast, 31% of the school buildings were characterized by hazard index values higher than 1. The maximum cumulative ratio approach highlighted that the concern for non-carcinogenic health effects was either low or the health risk was driven by more substances. The median excess lifetime cancer risk values exceeded the acceptable value of 1 × 10-6 in the case of radon and formaldehyde. PM2.5 mass concentration values exceeded the 24 h and annual guideline values set by the World Health Organization in 56 and 85% of the cases, respectively. About 80% of the schools could not manage to comply with the recommended concentration value for carbon dioxide (1000 ppm).


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Europa (Continente) , Instituciones Académicas
15.
Indoor Air ; 31(2): 426-439, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32966653

RESUMEN

The aim of this study was to explore the association between the building-related occupants' reported health symptoms and the indoor pollutant concentrations in a sample of 148 office rooms, within the framework of the European OFFICAIR research project. A large field campaign was performed in 37 office buildings among eight countries, which included (a) 5-day air sampling of volatile organic compounds (VOCs), aldehydes, ozone, and NO2 (b) collection of information from 1299 participants regarding their personal characteristics and health perception at workplace using online questionnaires. Stepwise and multilevel logistic regressions were applied to investigate associations between health symptoms and pollutant concentrations considering personal characteristics as confounders. Occupants of offices with higher pollutant concentrations were more likely to report health symptoms. Among the studied VOCs, xylenes were associated with general (such as headache and tiredness) and skin symptoms, ethylbenzene with eye irritation and respiratory symptoms, a-pinene with respiratory and heart symptoms, d-limonene with general symptoms, and styrene with skin symptoms. Among aldehydes, formaldehyde was associated with respiratory and general symptoms, acrolein with respiratory symptoms, propionaldehyde with respiratory, general, and heart symptoms, and hexanal with general SBS. Ozone was associated with almost all symptom groups.


Asunto(s)
Contaminación del Aire Interior , Exposición por Inhalación/estadística & datos numéricos , Aldehídos , Autoevaluación Diagnóstica , Monitoreo del Ambiente , Formaldehído , Humanos , Síndrome del Edificio Enfermo , Compuestos Orgánicos Volátiles , Lugar de Trabajo
16.
Indoor Air ; 30(1): 76-87, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31593610

RESUMEN

The aim of this study was to identify determinants of aldehyde and volatile organic compound (VOC) indoor air concentrations in a sample of more than 140 office rooms, in the framework of the European OFFICAIR research project. A large field campaign was performed, which included (a) the air sampling of aldehydes and VOCs in 37 newly built or recently retrofitted office buildings across 8 European countries in summer and winter and (b) the collection of information on building and offices' characteristics using checklists. Linear mixed models for repeated measurements were applied to identify the main factors affecting the measured concentrations of selected indoor air pollutants (IAPs). Several associations between aldehydes and VOCs concentrations and buildings' structural characteristic or occupants' activity patterns were identified. The aldehyde and VOC determinants in office buildings include building and furnishing materials, indoor climate characteristics (room temperature and relative humidity), the use of consumer products (eg, cleaning and personal care products, office equipment), as well as the presence of outdoor sources in the proximity of the buildings (ie, vehicular traffic). Results also showed that determinants of indoor air concentrations varied considerably among different type of pollutants.


Asunto(s)
Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Lugar de Trabajo/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Aldehídos/análisis , Europa (Continente) , Modelos Lineales , Compuestos Orgánicos Volátiles/análisis
17.
J Water Health ; 16(6): 947-957, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30540269

RESUMEN

While disinfection of swimming pools is indispensable for microbiological safety, it may lead to the formation of disinfection by-products. Most studies agree that inhalation exposure is the predominant pathway of the associated health risks, but assumptions are based on concentrations measured in water and evaporation models. Pool water and air were sampled in 19 swimming pools. Trihalomethanes were detected in all sites; chloroform being the most abundant species. Concentrations ranged between 12.8-71.2 µg/L and 11.1-102.2 µg/m3 in pool water and air, respectively. The individual lifetime carcinogenic risk associated with chloroform in swimming pools exceeded 10-6 in all age groups for recreational swimmers and 10-5 for elite swimmers and staff, even if the pool complied with the national standards. Inhalation exposure was estimated and found to be the most relevant, however, different mass transfer models from water measurements significantly under- or overestimated the health burden compared to direct calculation from the concentration in air. The observed health risks call for defining regulatory values and monitoring requirement of indoor air quality in swimming pools.


Asunto(s)
Desinfectantes/análisis , Exposición por Inhalación/normas , Piscinas , Purificación del Agua/métodos , Cloroformo , Desinfección , Política Ambiental , Humanos , Exposición por Inhalación/legislación & jurisprudencia , Exposición por Inhalación/estadística & datos numéricos , Natación , Trihalometanos , Purificación del Agua/legislación & jurisprudencia
18.
Sci Total Environ ; 587-588: 59-67, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28228238

RESUMEN

In the frame of the OFFICAIR project, office buildings were investigated across Europe to assess how the office workers are exposed to different particulate matter (PM) characteristics (i.e. PM2.5 mass concentration, particulate oxidative potential (OP) based on ascorbate and reduced glutathione depletion, trace element concentration and total particle number concentration (PNC)) within the buildings. Two offices per building were investigated during the working hours (5 consecutive days; 8h per day) in two campaigns. Differences were observed for all parameters across the office buildings. Our results indicate that the monitoring of the PM2.5 mass concentration in different offices within a building might not reflect the spatial variation of the health relevant PM characteristics such as particulate OP or the concentration of certain trace elements (e.g., Cu, Fe), since larger differences were apparent within a building for these parameters compared to that obtained for the PM2.5 mass concentration in many cases. The temporal variation was larger for almost all PM characteristics (except for the concentration of Mn) than the spatial differences within the office buildings. These findings indicate that repeated or long-term monitoring campaigns are necessary to have information about the temporal variation of the PM characteristics. However, spatial variation in exposure levels within an office building may cause substantial differences in total exposure in the long term. We did not find strong associations between the investigated indoor activities such as printing or windows opening and the PNC values. This might be caused by the large number of factors affecting PNC indoors and outdoors.

19.
Sci Total Environ ; 579: 169-178, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27866741

RESUMEN

The European project OFFICAIR aimed to broaden the existing knowledge regarding indoor air quality (IAQ) in modern office buildings, i.e., recently built or refurbished buildings. Thirty-seven office buildings participated in the summer campaign (2012), and thirty-five participated in the winter campaign (2012-2013). Four rooms were investigated per building. The target pollutants were twelve volatile organic compounds, seven aldehydes, ozone, nitrogen dioxide and particulate matter with aerodynamic diameter <2.5µm (PM2.5). Compared to other studies in office buildings, the benzene, toluene, ethylbenzene, and xylene concentrations were lower in OFFICAIR buildings, while the α-pinene and d-limonene concentrations were higher, and the aldehyde, nitrogen dioxide and PM2.5 concentrations were of the same order of magnitude. When comparing summer and winter, significantly higher concentrations were measured in summer for formaldehyde and ozone, and in winter for benzene, α-pinene, d-limonene, and nitrogen dioxide. The terpene and 2-ethylhexanol concentrations showed heterogeneity within buildings regardless of the season. Considering the average of the summer and winter concentrations, the acetaldehyde and hexanal concentrations tended to increase by 4-5% on average with every floor level increase, and the nitrogen dioxide concentration tended to decrease by 3% on average with every floor level increase. A preliminary evaluation of IAQ in terms of potential irritative and respiratory health effects was performed. The 5-day median and maximum indoor air concentrations of formaldehyde and ozone did not exceed their respective WHO air quality guidelines, and those of acrolein, α-pinene, and d-limonene were lower than their estimated thresholds for irritative and respiratory effects. PM2.5 indoor concentrations were higher than the 24-h and annual WHO ambient air quality guidelines.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Contaminación del Aire Interior/estadística & datos numéricos , Europa (Continente) , Material Particulado/análisis , Compuestos Orgánicos Volátiles/análisis
20.
J Chromatogr A ; 1472: 88-98, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27776771

RESUMEN

An analytical method has been developed for the quantitative determination of polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives (nitro- and oxy-PAHs respectively) in particulate matter (PM) samples. The sample preparation procedure included only a simple and quick sonication-assisted extraction step, clean-up based on addition of water and centrifugation as well as pre-concentration under N2 stream. The determination of 16 PAHs and 4 oxy-PAHs was carried out by gas chromatography-mass spectrometry, while liquid chromatography-tandem mass spectrometry was used in the case of the 11 investigated nitro-PAHs. The optimized method was fully evaluated in terms of trueness, precision (repeatability), limit of detection (LOD), limit of quantification (LOQ), sensitivity and linearity. The LOQ values ranged at pgm-3 level for the investigated PAHs (42pgm-3), oxy-PAHs (either 42 or 83pgm-3) and nitro-PAHs (either 83 or 167pgm-3) as well. The developed method was applied for the quantitative determination of PAHs, nitro- and oxy-PAHs in urban PM2.5 (particles with aerodynamic diameter smaller than 2.5µm) samples (n=36) collected in Budapest, Hungary. Almost 100% of the PM2.5 samples contained the investigated PAHs and oxy-PAHs in detectable and quantifiable amounts; however, the concentration of the nitro-PAHs was generally lower than the corresponding LOD/LOQ values. According to our results, during the 3-year long sampling campaign the concentration of benzo(a)pyrene never exceeded the limit value (1ngm-3) set by the European Commission.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Nitratos/química , Oxígeno/química , Material Particulado/química , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/química , Espectrometría de Masas en Tándem/métodos , Benzo(a)pireno/análisis , Benzo(a)pireno/química , Cromatografía Liquida , Ciudades , Límite de Detección , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...