Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38894339

RESUMEN

Vital sign monitoring is dominated by precise but costly contact-based sensors. Contactless devices such as radars provide a promising alternative. In this article, the effects of lateral radar positions on breathing and heartbeat extraction are evaluated based on a sleep study. A lateral radar position is a radar placement from which multiple human body zones are mapped onto different radar range sections. These body zones can be used to extract breathing and heartbeat motions independently from one another via these different range sections. Radars were positioned above the bed as a conventional approach and on a bedside table as well as at the foot end of the bed as lateral positions. These positions were evaluated based on six nights of sleep collected from healthy volunteers with polysomnography (PSG) as a reference system. For breathing extraction, comparable results were observed for all three radar positions. For heartbeat extraction, a higher level of agreement between the radar foot end position and the PSG was found. An example of the distinction between thoracic and abdominal breathing using a lateral radar position is shown. Lateral radar positions could lead to a more detailed analysis of movements along the body, with the potential for diagnostic applications.


Asunto(s)
Frecuencia Cardíaca , Radar , Respiración , Signos Vitales , Humanos , Signos Vitales/fisiología , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación , Frecuencia Cardíaca/fisiología , Adulto , Masculino , Polisomnografía/métodos , Femenino
2.
Nat Commun ; 13(1): 6715, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344570

RESUMEN

Neuronal plasticity has been shown to be causally linked to coincidence detection through dendritic spikes (dSpikes). We demonstrate the existence of SPW-R-associated, branch-specific, local dSpikes and their computational role in basal dendrites of hippocampal PV+ interneurons in awake animals. To measure the entire dendritic arbor of long thin dendrites during SPW-Rs, we used fast 3D acousto-optical imaging through an eccentric deep-brain adapter and ipsilateral local field potential recording. The regenerative calcium spike started at variable, NMDA-AMPA-dependent, hot spots and propagated in both direction with a high amplitude beyond a critical distance threshold (~150 µm) involving voltage-gated calcium channels. A supralinear dendritic summation emerged during SPW-R doublets when two successive SPW-R events coincide within a short temporal window (~150 ms), e.g., during more complex association tasks, and generated large dSpikes with an about 2.5-3-fold amplitude increase which propagated down to the soma. Our results suggest that these doublet-associated dSpikes can work as a dendritic-level temporal and spatial coincidence detector during SPW-R-related network computation in awake mice.


Asunto(s)
Interneuronas , Parvalbúminas , Ratones , Animales , Potenciales de Acción/fisiología , Interneuronas/fisiología , Dendritas/fisiología , Neuronas/fisiología , Hipocampo/fisiología , Células Piramidales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...