Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Plant Sci ; 28(7): 734-736, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37069001

RESUMEN

Peptides display a broad range of regulatory functions. Ormancey et al. recently identified an important new mechanism - complementary peptides (cPEPs) - that provide a versatile means to control cell functions. We draw a parallel between RNA and peptide biology, and discuss new routes of investigation and industrial applications opened by this work.


Asunto(s)
Agricultura , Péptidos , Péptidos/genética , Biotecnología
2.
J Exp Bot ; 72(10): 3881-3901, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33758916

RESUMEN

Plants need to cope with strong variations of nitrogen availability in the soil. Although many molecular players are being discovered concerning how plants perceive NO3- provision, it is less clear how plants recognize a lack of nitrogen. Following nitrogen removal, plants activate their nitrogen starvation response (NSR), which is characterized by the activation of very high-affinity nitrate transport systems (NRT2.4 and NRT2.5) and other sentinel genes involved in N remobilization such as GDH3. Using a combination of functional genomics via transcription factor perturbation and molecular physiology studies, we show that the transcription factors belonging to the HHO subfamily are important regulators of NSR through two potential mechanisms. First, HHOs directly repress the high-affinity nitrate transporters, NRT2.4 and NRT2.5. hho mutants display increased high-affinity nitrate transport activity, opening up promising perspectives for biotechnological applications. Second, we show that reactive oxygen species (ROS) are important to control NSR in wild-type plants and that HRS1 and HHO1 overexpressors and mutants are affected in their ROS content, defining a potential feed-forward branch of the signaling pathway. Taken together, our results define the relationships of two types of molecular players controlling the NSR, namely ROS and the HHO transcription factors. This work (i) up opens perspectives on a poorly understood nutrient-related signaling pathway and (ii) defines targets for molecular breeding of plants with enhanced NO3- uptake.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant Cell ; 31(5): 1171-1184, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30872321

RESUMEN

Nitrogen (N) and phosphorus (P) are key macronutrients sustaining plant growth and crop yield and ensuring food security worldwide. Understanding how plants perceive and interpret the combinatorial nature of these signals thus has important agricultural implications within the context of (1) increased food demand, (2) limited P supply, and (3) environmental pollution due to N fertilizer usage. Here, we report the discovery of an active control of P starvation response (PSR) by a combination of local and long-distance N signaling pathways in plants. We show that, in Arabidopsis (Arabidopsis thaliana), the nitrate transceptor CHLORINA1/NITRATE TRANSPORTER1.1 (CHL1/NRT1.1) is a component of this signaling crosstalk. We also demonstrate that this crosstalk is dependent on the control of the accumulation and turnover by N of the transcription factor PHOSPHATE STARVATION RESPONSE1 (PHR1), a master regulator of P sensing and signaling. We further show an important role of PHOSPHATE2 (PHO2) as an integrator of the N availability into the PSR since the effect of N on PSR is strongly affected in pho2 mutants. We finally show that PHO2 and NRT1.1 influence each other's transcript levels. These observations are summarized in a model representing a framework with several entry points where N signal influence PSR. Finally, we demonstrate that this phenomenon is conserved in rice (Oryza sativa) and wheat (Triticum aestivum), opening biotechnological perspectives in crop plants.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Oryza/genética , Fosfatos/deficiencia , Proteínas de Plantas/metabolismo , Transducción de Señal , Triticum/genética , Proteínas de Transporte de Anión/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Nitrógeno/metabolismo , Oryza/fisiología , Fósforo/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/fisiología
4.
New Phytol ; 220(4): 1185-1199, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29944179

RESUMEN

Through a mutualistic relationship with woody plant roots, ectomycorrhizal fungi provide growth-limiting nutrients, including inorganic phosphate (Pi), to their host. Reciprocal trades occur at the Hartig net, which is the symbiotic interface of ectomycorrhizas where the two partners are symplasmically isolated. Fungal Pi must be exported to the symbiotic interface, but the proteins facilitating this transfer are unknown. In the present study, we combined transcriptomic, microscopy, whole plant physiology, X-ray fluorescence mapping, 32 P labeling and fungal genetic approaches to unravel the role of HcPT2, a fungal Pi transporter, during the Hebeloma cylindrosporum-Pinus pinaster ectomycorrhizal association. We localized HcPT2 in the extra-radical hyphae and the Hartig net and demonstrated its determinant role for both the establishment of ectomycorrhizas and Pi allocation towards P. pinaster. We showed that the host plant induces HcPT2 expression and that the artificial overexpression of HcPT2 is sufficient to significantly enhance Pi export towards the central cylinder. Together, our results reveal that HcPT2 plays an important role in ectomycorrhizal symbiosis, affecting both Pi influx in the mycelium and efflux towards roots under the control of P. pinaster.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hebeloma/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Micorrizas/fisiología , Simbiosis , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Hebeloma/genética , Hebeloma/crecimiento & desarrollo , Proteínas de Transporte de Membrana/genética , Modelos Biológicos , Micelio/metabolismo , Fosfatos/metabolismo , Radioisótopos de Fósforo , Pinus/microbiología , Regulación hacia Arriba/genética
5.
Curr Opin Plant Biol ; 39: 159-167, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802165

RESUMEN

Plant specific GARP transcription factor family (made of ARR-B and G2-like) contains genes with very diverse in planta functions: nutrient sensing, root and shoot development, floral transition, chloroplast development, circadian clock oscillation maintenance, hormonal transport and signaling. In this work we review: first, their structural but distant relationships with MYB transcription factors, second, their role in planta, third, the diversity of their Cis-regulatory elements, fourth, their potential protein partners. We conclude that the GARP family may hold keys to understand the interactions between nutritional signaling pathways (nitrogen and phosphate at least) and development. Understanding how plant nutrition and development are coordinated is central to understand how to adapt plants to an ever-changing environment. Consequently GARPs are likely to attract increasing research attentions, as they are likely at the crossroads of these fundamental processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , ADN/metabolismo , Plantas/genética , Estructura Terciaria de Proteína , Factores de Transcripción/genética
6.
J Biol Chem ; 291(12): 6521-33, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26801610

RESUMEN

The regulation of the GORK (Guard Cell Outward Rectifying) Shaker channel mediating a massive K(+) efflux in Arabidopsis guard cells by the phosphatase AtPP2CA was investigated. Unlike the gork mutant, the atpp2ca mutants displayed a phenotype of reduced transpiration. We found that AtPP2CA interacts physically with GORK and inhibits GORK activity in Xenopus oocytes. Several amino acid substitutions in the AtPP2CA active site, including the dominant interfering G145D mutation, disrupted the GORK-AtPP2CA interaction, meaning that the native conformation of the AtPP2CA active site is required for the GORK-AtPP2CA interaction. Furthermore, two serines in the GORK ankyrin domain that mimic phosphorylation (Ser to Glu) or dephosphorylation (Ser to Ala) were mutated. Mutations mimicking phosphorylation led to a significant increase in GORK activity, whereas mutations mimicking dephosphorylation had no effect on GORK. In Xenopus oocytes, the interaction of AtPP2CA with "phosphorylated" or "dephosphorylated" GORK systematically led to inhibition of the channel to the same baseline level. Single-channel recordings indicated that the GORK S722E mutation increases the open probability of the channel in the absence, but not in the presence, of AtPP2CA. The dephosphorylation-independent inactivation mechanism of GORK by AtPP2CA is discussed in relation with well known conformational changes in animal Shaker-like channels that lead to channel opening and closing. In plants, PP2C activity would control the stomatal aperture by regulating both GORK and SLAC1, the two main channels required for stomatal closure.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Fosfoproteínas Fosfatasas/fisiología , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Genes Dominantes , Potenciales de la Membrana , Imitación Molecular , Datos de Secuencia Molecular , Mutación Missense , Fosforilación , Transpiración de Plantas , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Técnicas del Sistema de Dos Híbridos , Xenopus laevis
7.
Plant J ; 83(3): 466-79, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26058834

RESUMEN

In most plants, NO(3)(-) constitutes the major source of nitrogen, and its assimilation into amino acids is mainly achieved in shoots. Furthermore, recent reports have revealed that reduction of NO(3)(-) translocation from roots to shoots is involved in plant acclimation to abiotic stress. NPF2.3, a member of the NAXT (nitrate excretion transporter) sub-group of the NRT1/PTR family (NPF) from Arabidopsis, is expressed in root pericycle cells, where it is targeted to the plasma membrane. Transport assays using NPF2.3-enriched Lactococcus lactis membranes showed that this protein is endowed with NO(3)(-) transport activity, displaying a strong selectivity for NO(3)(-) against Cl(-). In response to salt stress, NO(3)(-) translocation to shoots is reduced, at least partly because expression of the root stele NO(3)(-) transporter gene NPF7.3 is decreased. In contrast, NPF2.3 expression was maintained under these conditions. A loss-of-function mutation in NPF2.3 resulted in decreased root-to-shoot NO(3)(-) translocation and reduced shoot NO(3)(-) content in plants grown under salt stress. Also, the mutant displayed impaired shoot biomass production when plants were grown under mild salt stress. These mutant phenotypes were dependent on the presence of Na(+) in the external medium. Our data indicate that NPF2.3 is a constitutively expressed transporter whose contribution to NO(3)(-) translocation to the shoots is quantitatively and physiologically significant under salinity.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Transporte de Anión/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/fisiología , Proteínas de Plantas/fisiología , Tolerancia a la Sal/fisiología , Lactococcus lactis , Transportadores de Nitrato
8.
Nat Commun ; 6: 6274, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25723764

RESUMEN

Nitrogen and phosphorus are among the most widely used fertilizers worldwide. Nitrate (NO3(-)) and phosphate (PO4(3-)) are also signalling molecules whose respective transduction pathways are being intensively studied. However, plants are continuously challenged with combined nutritional deficiencies, yet very little is known about how these signalling pathways are integrated. Here we report the identification of a highly NO3(-)-inducible NRT1.1-controlled GARP transcription factor, HRS1, document its genome-wide transcriptional targets, and validate its cis-regulatory elements. We demonstrate that this transcription factor and a close homologue repress the primary root growth in response to P deficiency conditions, but only when NO3(-) is present. This system defines a molecular logic gate integrating P and N signals. We propose that NO3(-) and P signalling converge via double transcriptional and post-transcriptional control of the same protein, HRS1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Meristema/metabolismo , Nitratos/metabolismo , Fosfatos/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Biología Computacional , Cartilla de ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Perfilación de la Expresión Génica , Immunoblotting , Funciones de Verosimilitud , Microscopía Fluorescente , Modelos Genéticos , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Plant Physiol ; 164(3): 1415-29, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24406792

RESUMEN

Shaker K(+) channels form the major K(+) conductance of the plasma membrane in plants. They are composed of four subunits arranged around a central ion-conducting pore. The intracellular carboxy-terminal region of each subunit contains several regulatory elements, including a C-linker region and a cyclic nucleotide-binding domain (CNBD). The C-linker is the first domain present downstream of the sixth transmembrane segment and connects the CNBD to the transmembrane core. With the aim of identifying the role of the C-linker in the Shaker channel properties, we performed subdomain swapping between the C-linker of two Arabidopsis (Arabidopsis thaliana) Shaker subunits, K(+) channel in Arabidopsis thaliana2 (KAT2) and Arabidopsis thaliana K(+) rectifying channel1 (AtKC1). These two subunits contribute to K(+) transport in planta by forming heteromeric channels with other Shaker subunits. However, they display contrasting behavior when expressed in tobacco mesophyll protoplasts: KAT2 forms homotetrameric channels active at the plasma membrane, whereas AtKC1 is retained in the endoplasmic reticulum when expressed alone. The resulting chimeric/mutated constructs were analyzed for subcellular localization and functionally characterized. We identified two contiguous amino acids, valine-381 and serine-382, located in the C-linker carboxy-terminal end, which prevent KAT2 surface expression when mutated into the equivalent residues from AtKC1. Moreover, we demonstrated that the nine-amino acid stretch 312TVRAASEFA320 that composes the first C-linker α-helix located just below the pore is a crucial determinant of KAT2 channel activity. A KAT2 C-linker/CNBD three-dimensional model, based on animal HCN (for Hyperpolarization-activated, cyclic nucleotide-gated K(+)) channels as structure templates, has been built and used to discuss the role of the C-linker in plant Shaker inward channel structure and function.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Activación del Canal Iónico , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Puntual/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Eliminación de Secuencia/genética , Homología Estructural de Proteína , Relación Estructura-Actividad , Fracciones Subcelulares/metabolismo
10.
Plant Cell ; 19(11): 3760-77, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17993627

RESUMEN

Root NO(3)(-) efflux to the outer medium is a component of NO(3)(-) net uptake and can even overcome influx upon various stresses. Its role and molecular basis are unknown. Following a functional biochemical approach, NAXT1 (for NITRATE EXCRETION TRANSPORTER1) was identified by mass spectrometry in the plasma membrane (PM) of Arabidopsis thaliana suspension cells, a localization confirmed using a NAXT1-Green Fluorescent Protein fusion protein. NAXT1 belongs to a subclass of seven NAXT members from the large NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER family and is mainly expressed in the cortex of mature roots. The passive NO(3)(-) transport activity (K(m) = 5 mM) in isolated root PM, electrically coupled to the ATP-dependant H(+)-pumping activity, is inhibited by anti-NAXT antibodies. In standard culture conditions, NO(3)(-) contents were altered in plants expressing NAXT-interfering RNAs but not in naxt1 mutant plants. Upon acid load, unidirectional root NO(3)(-) efflux markedly increased in wild-type plants, leading to a prolonged NO(3)(-) excretion regime concomitant with a decrease in root NO(3)(-) content. In vivo and in vitro mutant phenotypes revealed that this response is mediated by NAXT1, whose expression is upregulated at the posttranscriptional level. Strong medium acidification generated a similar response. In vitro, the passive efflux of NO(3)(-) (but not of Cl(-)) was strongly impaired in naxt1 mutant PM. This identification of NO(3)(-) efflux transporters at the PM of plant cells opens the way to molecular studies of the physiological role of NO(3)(-) efflux in stressed or unstressed plants.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Nitratos/metabolismo , Raíces de Plantas/citología , Secuencia de Aminoácidos , Proteínas de Transporte de Anión/metabolismo , Anticuerpos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Membrana Celular/enzimología , Medios de Cultivo , ADN Bacteriano/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , Fenotipo , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , ATPasas de Translocación de Protón/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
11.
Methods Mol Biol ; 355: 267-78, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17093317

RESUMEN

Membrane protein identification by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) requires that proteins be separated prior to MS analysis. After membrane solubilization with the nondenaturing detergent n-dodecyl-beta-D-maltoside, proteins can be separated by ion-exchange chromatography (IEC) and further resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). An additional separation step by gel filtration (GF) before IEC/SDS-PAGE can be required depending on the complexity of the membrane protein mixture. Staining of final SDS-PAGE gels allows one to establish simply the protein expression pattern of a membrane fraction and to profile responses. Moreover, in-gel digestion of hydrophobic integral proteins is valuable. Finally, the resolution capacity of this separation procedure allows identification of proteins by MALDI-TOF MS. The method is illustrated by application to plant and yeast plasma membrane and to plant vacuolar membrane.


Asunto(s)
Proteínas de la Membrana/análisis , Proteínas de la Membrana/aislamiento & purificación , Proteínas de Plantas/análisis , Proteínas de Plantas/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fraccionamiento Celular , Cromatografía en Gel/métodos , Cromatografía por Intercambio Iónico/métodos , Bases de Datos de Proteínas , Electroforesis en Gel de Poliacrilamida/métodos , Perfilación de la Expresión Génica/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Indicadores y Reactivos , Proteínas de la Membrana/química , Proteínas de Plantas/química , Plantas/química , Solubilidad , Tripsina
12.
Proteomics ; 6(10): 3029-39, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16622836

RESUMEN

Calcofluor is an antifungal compound known to induce structural perturbations of the cell wall by interfering with the synthesis of chitin microfibril. Proteins from a stripped plasma membrane fraction were solubilized with the neutral and non-denaturing detergent, the n-dodecyl beta-D-maltoside. Proteins were then resolved using a recently described ion-exchange chromatography (IEC)/lithium dodecyl sulfate (LDS)-PAGE procedure. Nearly 90 proteins were identified and clustered, based on their pI, molecular weight, abundance and/or hydrophobicity. This method was then applied to profile the plasma membrane response to calcofluor. The LDS-PAGE patterns obtained from whole plasma membrane proteins were similar for the non-treated and calcofluor-treated samples. However, IEC/LDS-PAGE analysis revealed subtle changes in the expression of several proteins of low abundance, in response to calcofluor. These proteins include Pil1p and Lsp1p, two sphingolipid long-chain base-responsive inhibitors of protein kinases involved in signaling pathways for cell wall integrity and Rho1p, a small GTPase. It was recently hypothesized that Pil1p and Lsp1p could associate with, and regulate, the plasma membrane beta-1-3-glucan synthase, responsible for the synthesis of another major microfibril for yeast cell wall. Results are discussed with respect to both calcofluor effects on the plasma membrane proteins and the power of the IEC/LDS-PAGE procedure in the search for new potential therapeutics targets.


Asunto(s)
Antifúngicos/farmacología , Bencenosulfonatos/farmacología , Proteínas de la Membrana/biosíntesis , Proteoma/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Electroforesis en Gel de Poliacrilamida , Saccharomyces cerevisiae/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Proteomics ; 4(2): 397-406, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14760709

RESUMEN

We developed a method to characterize different classes of membrane proteins within a single experiment and using simple matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis. After membrane solubilization with the nondenaturing detergent n-dodecyl-beta-D-maltoside, proteins were separated successively by gel filtration and ion-exchange chromatography and finally by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This procedure allowed to characterize 70 proteins from a membrane fraction enriched in plant vacuolar membrane (Arabidopsis), including integral proteins like the V0 complex of the H(+)-ATPase, the H(+)-pyrophosphatase or the glutathione S-conjugate ATPase AtMRP1, and peripheral proteins like the subunits of the catalytic V1 complex of the H(+)-ATPase. Approximately 60% of identified proteins were predicted to possess at least two trans-membrane domains. Furthermore, proteins, with molecular masses ranging between 20 and 200 kDa were distributed into two populations with maximum frequencies at pI 5.3 and 8.9. Finally, this procedure appeared to allow the identification of proteins known to be minor in whole-cell extracts like signaling or vesicular trafficking proteins. Almost 50% of the proteins identified were functionally unknown whereas the others confirmed that the plant vacuole is a multipurpose compartment.


Asunto(s)
Arabidopsis/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/análisis , Proteínas de Plantas/análisis , Vacuolas/metabolismo , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Bases de Datos de Proteínas , Detergentes/química , Electroforesis en Gel de Poliacrilamida , Transporte de Proteínas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...