Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22976, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38151569

RESUMEN

Gastrointestinal bleeding, as a potentially life-threatening condition, is typically diagnosed by radiation-based imaging modalities like computed tomography or more invasively catheter-based angiography. Endoscopy enables examination of the upper gastrointestinal tract and the colon but not of the entire small bowel. Magnetic Particle Imaging (MPI) enables non-invasive, volumetric imaging without ionizing radiation. The aim of this study was to evaluate the feasibility of detecting gastrointestinal bleeding by single- and multi-contrast MPI using human-sized organs. A 3D-printed small bowel phantom and porcine small bowel specimens were prepared with a defect within the bowel wall as the source of a bleeding. For multi-contrast MPI, the bowel lumen was filled with an intestinal tracer representing an orally administered tracer. MPI was performed to evaluate the fluid exchange between the vascular compartment of the bowel wall and the lumen while a blood pool tracer was applied. Leakage of the blood pool tracer was observed to the bowel lumen. Multi-contrast MPI enabled co-registration of both tracers at the same location within the bowel lumen indicating gastrointestinal bleeding. Single- and multi-contrast MPI are feasible to visualize gastrointestinal bleeding. Therefore, MPI might emerge as a useful tool for radiation-free detection of bleeding within the entire gastrointestinal tract.


Asunto(s)
Imagen por Resonancia Magnética , Nanopartículas de Magnetita , Humanos , Animales , Porcinos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Hemorragia Gastrointestinal/diagnóstico por imagen , Fenómenos Magnéticos
2.
Phys Med Biol ; 68(17)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37609892

RESUMEN

Objective.Magnetic particle imaging (MPI) is capable of high temporal resolution measurements of the spatial distribution of magnetic nanoparticles and therefore well suited for perfusion imaging, which is an important tool in medical diagnosis. Perfusion imaging in MPI usually requires a fresh bolus of tracer material to capture the key signal dynamics. Here, we propose a method to decouple the imaging sequence from the injection of additional tracer material, without further increasing the administered iron dose in the body with each image.Approach.A bolus of physiological saline solution without any particles (negative contrast) diminishes the steady-state concentration of a long-circulating tracer during passage. This depression in the measured concentration contributes to the required contrast dynamics. The presence of a long-circulating tracer is therefore a prerequisite to obtain the negative contrast. As a quantitative tracer based imaging method, the signal is linear in the tracer concentration for any location that contains nanoparticles and zero in the surrounding tissue which does not provide any intrinsic signal. After tracer injection, the concentration over time (positive contrast) can be utilized to calculate dynamic diagnostic parameters like perfusion parameters in vessels and organs. Every acquired perfusion image thus requires a new bolus of tracer with a sufficiently large iron dose to be visible above the background.Main results.Perfusion parameters are calculated based on the time response of the proposed negative bolus and compared to a positive bolus. Results from phantom experiments show that normalized signals from positive and negative boli are concurrent and deviations of calculated perfusion maps are low.Significance.Our method opens up the possibility to increase the total monitoring time of a future patient by utilizing a positive-negative contrast sequence, while minimizing the iron dose per acquired image.


Asunto(s)
Medios de Contraste , Solución Salina , Humanos , Hierro , Imagen de Perfusión , Fenómenos Magnéticos
3.
IEEE Trans Med Imaging ; 41(11): 3301-3308, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35709119

RESUMEN

Vascular interventions are a promising application of Magnetic Particle Imaging enabling a high spatial and temporal resolution without using ionizing radiation. The possibility to visualize the vessels as well as the devices, especially at the same time using multi-contrast approaches, enables a higher accuracy for diagnosis and treatment of vascular diseases. Different techniques to make devices MPI visible have been introduced so far, such as varnish markings or filling of balloons. However, all approaches include challenges for in vivo applications, such as the stability of the varnishing or the visibility of tracer filled balloons in deflated state. In this contribution, we present for the first time a balloon catheter that is molded from a granulate incorporating nanoparticles and can be visualized sufficiently in MPI. Computed tomography is used to show the homogeneous distribution of particles within the material. Safety measurements confirm that the incorporation of nanoparticles has no negative effect on the balloon. A dynamic experiment is performed to show that the inflation as well as deflation of the balloon can be imaged with MPI.


Asunto(s)
Diagnóstico por Imagen , Nanopartículas de Magnetita , Diagnóstico por Imagen/métodos , Catéteres , Fenómenos Magnéticos
4.
IEEE Trans Med Imaging ; 41(7): 1862-1873, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35130154

RESUMEN

Improving resolution and sensitivity will widen possible medical applications of magnetic particle imaging. Pulsed excitation promises such benefits, at the cost of more complex hardware solutions and restrictions on drive field amplitude and frequency. State-of-the-art systems utilize a sinusoidal excitation to drive superparamagnetic nanoparticles into the non-linear part of their magnetization curve, which creates a spectrum with a clear separation of direct feed-through and higher harmonics caused by the particles response. One challenge for rectangular excitation is the discrimination of particle and excitation signals, both broad-band. Another is the drive-field sequence itself, as particles that are not placed at the same spatial position, may react simultaneously and are not separable by their signal phase or shape. To overcome this potential loss of information in spatial encoding for high amplitudes, a superposition of shifting fields and drive-field rotations is proposed in this work. Upon close view, a system matrix approach is capable to maintain resolution, independent of the sequence, if the response to pulsed sequences still encodes information within the phase. Data from an Arbitrary Waveform Magnetic Particle Spectrometer with offsets in two spatial dimensions is measured and calibrated to guarantee device independence. Multiple sequence types and waveforms are compared, based on frequency space image reconstruction from emulated signals, that are derived from measured particle responses. A resolution of 1.0 mT (0.8 mm for a gradient of (-1.25,-1.25,2.5) Tm-1) in x- and y-direction was achieved and a superior sensitivity for pulsed sequences was detected on the basis of reference phantoms.


Asunto(s)
Diagnóstico por Imagen , Nanopartículas , Fenómenos Magnéticos , Imagen por Resonancia Magnética/métodos , Magnetismo , Fantasmas de Imagen
5.
Invest Radiol ; 57(7): 463-469, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35148536

RESUMEN

OBJECTIVES: Fat quantification by dual-energy computed tomography (DECT) provides contrast-independent objective results, for example, on hepatic steatosis or muscle quality as parameters of prognostic relevance. To date, fat quantification has only been developed and used for source-based DECT techniques as fast kVp-switching CT or dual-source CT, which require a prospective selection of the dual-energy imaging mode.It was the purpose of this study to develop a material decomposition algorithm for fat quantification in phantoms and validate it in vivo for patient liver and skeletal muscle using a dual-layer detector-based spectral CT (dlsCT), which automatically generates spectral information with every scan. MATERIALS AND METHODS: For this feasibility study, phantoms were created with 0%, 5%, 10%, 25%, and 40% fat and 0, 4.9, and 7.0 mg/mL iodine, respectively. Phantom scans were performed with the IQon spectral CT (Philips, the Netherlands) at 120 kV and 140 kV and 3 T magnetic resonance (MR) (Philips, the Netherlands) chemical-shift relaxometry (MRR) and MR spectroscopy (MRS). Based on maps of the photoelectric effect and Compton scattering, 3-material decomposition was done for fat, iodine, and phantom material in the image space.After written consent, 10 patients (mean age, 55 ± 18 years; 6 men) in need of a CT staging were prospectively included. All patients received contrast-enhanced abdominal dlsCT scans at 120 kV and MR imaging scans for MRR. As reference tissue for the liver and the skeletal muscle, retrospectively available non-contrast-enhanced spectral CT data sets were used. Agreement between dlsCT and MR was evaluated for the phantoms, 3 hepatic and 2 muscular regions of interest per patient by intraclass correlation coefficients (ICCs) and Bland-Altman analyses. RESULTS: The ICC was excellent in the phantoms for both 120 kV and 140 kV (dlsCT vs MRR 0.98 [95% confidence interval (CI), 0.94-0.99]; dlsCT vs MRS 0.96 [95% CI, 0.87-0.99]) and in the skeletal muscle (0.96 [95% CI, 0.89-0.98]). For log-transformed liver fat values, the ICC was moderate (0.75 [95% CI, 0.48-0.88]). Bland-Altman analysis yielded a mean difference of -0.7% (95% CI, -4.5 to 3.1) for the liver and of 0.5% (95% CI, -4.3 to 5.3) for the skeletal muscle. Interobserver and intraobserver agreement were excellent (>0.9). CONCLUSIONS: Fat quantification was developed for dlsCT and agreement with MR techniques demonstrated for patient liver and muscle. Hepatic steatosis and myosteatosis can be detected in dlsCT scans from clinical routine, which retrospectively provide spectral information independent of the imaging mode.


Asunto(s)
Yodo , Tomografía Computarizada por Rayos X , Adulto , Anciano , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Estudios Prospectivos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-34617413

RESUMEN

Stroke is one of the leading worldwide causes of death and sustained disability. Rapid and accurate assessment of cerebral perfusion is essential to diagnose and successfully treat stroke patients. Magnetic particle imaging (MPI) is a new technology with the potential to overcome some limitations of established imaging modalities. It is an innovative and radiation-free imaging technique with high sensitivity, specificity, and superior temporal resolution. MPI enables imaging and diagnosis of stroke and other neurological pathologies such as hemorrhage, tumors, and inflammatory processes. MPI scanners also offer the potential for targeted therapies of these diseases. Due to lower field requirements, MPI scanners can be designed as resistive magnets and employed as mobile devices for bedside imaging. With these advantages, MPI could accelerate and improve the diagnosis and treatment of neurological disorders. This review provides a basic introduction to MPI, discusses its current use for stroke imaging, and addresses future applications, including the potential for clinical implementation. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.


Asunto(s)
Diagnóstico por Imagen , Nanopartículas de Magnetita , Circulación Cerebrovascular , Humanos , Isquemia , Fenómenos Magnéticos
7.
Phys Med Biol ; 66(9)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33765669

RESUMEN

Magnetic particle imaging (MPI) is a tomographic imaging technique for determining the spatial distribution of superparamagnetic nanoparticles. Current MPI systems are capable of imaging iron masses over a wide dynamic range of more than four orders of magnitude. In theory, this range could be further increased using adaptive amplifiers, which prevent signal clipping. While this applies to a single sample, the dynamic range is severely limited if several samples with different concentrations or strongly inhomogeneous particle distributions are considered. One scenario that occurs quite frequently in pre-clinical applications is that a highly concentrated tracer bolus in the vascular system 'shadows' nearby organs with lower effective tracer concentrations. The root cause of the problem is the ill-posedness of the MPI imaging operator, which requires regularization for stable reconstruction. In this work, we introduce a simple two-step algorithm that increases the dynamic range by a factor of four. Furthermore, the algorithm enables spatially adaptive regularization, i.e. highly concentrated signals can be reconstructed with maximum spatial resolution, while low concentrated signals are strongly regularized to prevent noise amplification.


Asunto(s)
Algoritmos , Nanopartículas de Magnetita , Tomografía
8.
Phys Med Biol ; 65(23): 235007, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33049723

RESUMEN

Magnetic particle imaging (MPI) is a novel and versatile imaging modality developing toward human application. When up-scaling to human size, the sensitivity of the systems naturally drops as the coil sensitivity depends on the bore diameter. Thus, new methods to push the sensitivity limit further have to be investigated to cope for this loss. In this paper a dedicated surface coil for mice is developed, improving the sensitivity in cerebral imaging applications. Similar to magnetic resonance imaging the developed surface coil improves the sensitivity due to the closer vicinity to the region of interest. With the developed surface coil presented in this work, it is possible to image tracer samples containing only 896 pg[Formula: see text] and detect even small vessels and anatomical structures within a wild type mouse model. As current sensitivity measures require a tracer system a new method for determining a sensitivity measure without this requirement is presented and verified to enable comparison between MPI receiver systems.


Asunto(s)
Encéfalo/diagnóstico por imagen , Diseño de Equipo/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Animales , Ratones
9.
ACS Nano ; 14(10): 13913-13923, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32941000

RESUMEN

Magnetic particle imaging (MPI) is an innovative radiation-free tomographic imaging method providing excellent temporal resolution, contrast, sensitivity, and safety. Mobile human MPI prototypes suitable for continuous bedside monitoring of whole-brain perfusion have been developed. However, for the clinical translation of MPI, a crucial gap in knowledge still remains: while MPI can visualize the reduction in blood flow and tissue perfusion in cerebral ischemia, it is unclear whether MPI works in intracranial hemorrhage. Our objective was to investigate the capability of MPI to detect intracranial hemorrhage in a murine model. Intracranial hemorrhage was induced through the injection of collagenase into the striatum of C57BL/6 mice. After the intravenous infusion of a long-circulating MPI-tailored tracer consisting of superparamagnetic iron oxides, we detected the intracranial hemorrhage in less than 3 min and could monitor hematoma expansion in real time. Multicontrast MPI can distinguish tracers based on their physical characteristics, core size, temperature, and viscosity. By employing in vivo multicontrast MPI, we were able to differentiate areas of liquid and coagulated blood within the hematoma, which could provide valuable information in surgical decision making. Multicontrast MPI also enabled simultaneous imaging of hemorrhage and cerebral perfusion, which is essential in the care of critically ill patients with increased intracranial pressure. We conclude that MPI can be used for real-time diagnosis of intracranial hemorrhage. This work is an essential step toward achieving the clinical translation of MPI for point-of-care monitoring of different stroke subtypes.


Asunto(s)
Nanopartículas de Magnetita , Tomografía , Animales , Hemorragia Cerebral/diagnóstico por imagen , Humanos , Hemorragias Intracraneales/diagnóstico por imagen , Fenómenos Magnéticos , Ratones , Ratones Endogámicos C57BL
10.
IEEE Trans Med Imaging ; 39(11): 3548-3558, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32746103

RESUMEN

Magnetic particle imaging is a tracer based imaging technique to determine the spatial distribution of superparamagnetic iron oxide nanoparticles with a high spatial and temporal resolution. Due to physiological constraints, the imaging volume is restricted in size and larger volumes are covered by shifting object and imaging volume relative to each other. This results in reduced temporal resolution, which can lead to motion artifacts when imaging dynamic tracer distributions. A common source of such dynamic distributions are cardiac and respiratory motion in in-vivo experiments, which are in good approximation periodic. We present a raw data processing technique that combines data snippets into virtual frames corresponding to a specific state of the dynamic motion. The technique is evaluated on the basis of measurement data obtained from a rotational phantom at two different rotational frequencies. These frequencies are determined from the raw data without reconstruction and without an additional navigator signal. The reconstructed images give reasonable representations of the rotational phantom frozen in several different states of motion while motion artifacts are suppressed.


Asunto(s)
Artefactos , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador , Fenómenos Magnéticos , Imagen por Resonancia Magnética , Movimiento (Física) , Fantasmas de Imagen
11.
Nanomedicine (Lond) ; 15(8): 739-753, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32207374

RESUMEN

Aim: Magnetic particle imaging (MPI) is highly promising for biomedical applications, but optimal tracers for MPI, namely superparamagnetic iron oxide-based contrast agents, are still lacking. Materials & methods: The encapsulation of commercially available nanoparticles, specifically synomag®-D and perimag®, into human red blood cells (RBCs) was performed by a hypotonic dialysis and isotonic resealing procedure. The amounts of superparamagnetic iron oxide incorporated into RBCs were determined by Fe quantification using nuclear magnetic resonance and magnetic particle spectroscopy. Results: Perimag-COOH nanoparticles were identified as the best nanomaterial for encapsulation in RBCs. Perimag-COOH-loaded RBCs proved to be viable cells showing a good magnetic particle spectroscopy performance, while the magnetic signal of synomag-D-COOH-loaded RBCs dropped sharply. Conclusion: Perimag-COOH-loaded RBCs could be a potential tool for MPI diagnostic applications.


Asunto(s)
Medios de Contraste , Eritrocitos , Nanopartículas de Magnetita , Humanos , Imagen por Resonancia Magnética , Magnetismo
12.
Data Brief ; 28: 104971, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31890809

RESUMEN

Magnetic particle imaging is a tomographic imaging technique capable of measuring the local concentration of magnetic nanoparticles that can be used as tracers in biomedical applications. Since MPI is still at a very early stage of development, there are only a few MPI systems worldwide that are primarily operated by technical research groups that develop the systems themselves. It is therefore difficult for researchers without direct access to an MPI system to obtain experimental MPI data. The purpose of the OpenMPIData initiative is to make experimental MPI data freely accessible via a web platform. Measurements are performed with multiple phantoms and different image sequences from 1D to 3D. The datasets are stored in the magnetic particle image data format (MDF), an open document standard for storing MPI data. The open data is mainly intended for mathematicians and algorithm developers working on new reconstruction algorithms. Each dataset is designed to pose a specific challenge to image reconstruction. In addition to the measurement data, computer aided design (CAD) drawings of the phantoms are also provided so that the exact dimensions of the particle concentrations are known. Thus, the phantoms can be reproduced by other research groups using additive manufacturing. These reproduced phantoms can be used to compare different MPI systems.

13.
IEEE Trans Med Imaging ; 39(5): 1347-1358, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31647426

RESUMEN

The tomographic imaging method magnetic particle imaging (MPI) requires a multi-patch approach for capturing large field of views. This approach consists of a continuous or stepwise spatial shift of a small sub-volume of only few cubic centimeters size, which is scanned using one or multiple excitation fields in the kHz range. Under the assumption of ideal magnetic fields, the MPI system matrix is shift invariant and in turn a single matrix suffices for image reconstruction significantly reducing the calibration time and reconstruction effort. For large field imperfections, however, the method can lead to severe image artifacts. In the present work we generalize the efficient multi-patch reconstruction to work under non-ideal field conditions, where shift invariance holds only approximately for small shifts of the sub-volume. Patches are clustered based on a magnetic-field-based metric such that in each cluster the shift invariance holds in good approximation. The total number of clusters is the main parameter of our method and allows to trade off calibration time and image artifacts. The magnetic-field-based metric allows to perform the clustering without prior knowledge of the system matrices. The developed reconstruction algorithm is evaluated on a multi-patch measurement sequence with 15 patches, where efficient multi-patch reconstruction with a single calibration measurement leads to strong image artifacts. Analysis reveals that calibration measurements can be decreased from 15 to 11 with no visible image artifacts. A further reduction to 9 is possible with only slight degradation in image quality.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía , Algoritmos , Artefactos , Campos Magnéticos , Fantasmas de Imagen
14.
Phys Med Biol ; 64(7): 074001, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30870817

RESUMEN

Magnetic particle imaging (MPI) is an imaging modality that detects the response of a distribution of magnetic nanoparticle tracers to alternating magnetic fields. There has recently been exploration into multi-contrast MPI, in which the signal from different tracer materials or environments is separately reconstructed, resulting in multi-channel images that could enable temperature or viscosity quantification. In this work, we apply a multi-contrast reconstruction technique to discriminate between nanoparticle tracers of different core sizes. Three nanoparticle types with core diameters of 21.9 nm, 25.3 nm and 27.7 nm were each imaged at 21 different locations within the scanner field of view. Multi-channel images were reconstructed for each sample and location, with each channel corresponding to one of the three core sizes. For each image, signal weight vectors were calculated, which were then used to classify each image by core size. With a block averaging length of 10 000, the median signal-to-noise ratio was 40 or higher for all three sample types, and a correct prediction rate of 96.7% was achieved, indicating that core size can effectively be predicted using signal weight vector classification with close to 100% accuracy while retaining high MPI image quality. The discrimination of the core size was reliable even when multiple samples of different core sizes were placed in the measuring field.


Asunto(s)
Algoritmos , Medios de Contraste , Nanopartículas de Magnetita/química , Imagen Molecular/métodos , Relación Señal-Ruido , Procesamiento de Imagen Asistido por Computador , Imagen Molecular/instrumentación
15.
IEEE Trans Med Imaging ; 38(4): 932-944, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30334751

RESUMEN

Due to peripheral nerve stimulation, the magnetic particle imaging (MPI) method is limited in the maximum applicable excitation-field amplitude. This in turn leads to a limitation of the size of the covered field of view (FoV) to few millimeters. In order to still capture a larger FoV, MPI is capable to rapidly acquire volumes in a multi-patch fashion. To this end, the small excitation volume is shifted through space using the magnetic focus fields. Recently, it has been shown that the individual patches are preferably reconstructed in a joint fashion by solving a single linear system of equations taking the coupling between individual patches into account. While this improves the image quality, it is computationally and memory demanding since the size of the linear system increases in the best case quadratically with the number of patches. In this paper, we will develop a reconstruction algorithm for MPI multi-patch data exploiting the sparsity of the joint system matrix. A highly efficient implicit matrix format allows for rapid on-the-fly calculations of linear algebra operations involving the system matrix. Using this approach, the computational effort can be reduced to a linear dependence on the number of used patches. The algorithm is validated on 3-D multi-patch phantom data sets and shown to reconstruct large data sets with 15 patches in less than 22 s.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Nanopartículas de Magnetita/química , Tomografía/métodos , Algoritmos , Magnetismo , Fantasmas de Imagen
16.
J Med Imaging (Bellingham) ; 5(4): 046002, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30525063

RESUMEN

Magnetic particle imaging (MPI) is a highly sensitive imaging method that enables the visualization of magnetic tracer materials with a temporal resolution of more than 46 volumes per second. In MPI, the size of the field of view (FoV) scales with the strengths of the applied magnetic fields. In clinical applications, those strengths are limited by peripheral nerve stimulation, specific absorption rates, and the requirement to acquire images of high spatial resolution. Therefore, the size of the FoV is usually a few cubic centimeters. To bypass this limitation, additional focus fields and/or external object movements can be applied. The latter approach is investigated. An object is moved through the scanner bore one step at a time, whereas the MPI scanner continuously acquires data from its static FoV. Using a 3-D phantom and dynamic 3-D in vivo data, it is shown that the data from such a moving table experiment can be jointly reconstructed after reordering the data with respect to the stepwise object shifts and heart beat phases.

17.
ACS Nano ; 11(10): 10480-10488, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28976180

RESUMEN

The fast and accurate assessment of cerebral perfusion is fundamental for the diagnosis and successful treatment of stroke patients. Magnetic particle imaging (MPI) is a new radiation-free tomographic imaging method with a superior temporal resolution, compared to other conventional imaging methods. In addition, MPI scanners can be built as prehospital mobile devices, which require less complex infrastructure than computed tomography (CT) and magnetic resonance imaging (MRI). With these advantages, MPI could accelerate the stroke diagnosis and treatment, thereby improving outcomes. Our objective was to investigate the capabilities of MPI to detect perfusion deficits in a murine model of ischemic stroke. Cerebral ischemia was induced by inserting of a microfilament in the internal carotid artery in C57BL/6 mice, thereby blocking the blood flow into the medial cerebral artery. After the injection of a contrast agent (superparamagnetic iron oxide nanoparticles) specifically tailored for MPI, cerebral perfusion and vascular anatomy were assessed by the MPI scanner within seconds. To validate and compare our MPI data, we performed perfusion imaging with a small animal MRI scanner. MPI detected the perfusion deficits in the ischemic brain, which were comparable to those with MRI but in real-time. For the first time, we showed that MPI could be used as a diagnostic tool for relevant diseases in vivo, such as an ischemic stroke. Due to its shorter image acquisition times and increased temporal resolution compared to that of MRI or CT, we expect that MPI offers the potential to improve stroke imaging and treatment.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Imagen de Perfusión/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Animales , Imagen por Resonancia Magnética/instrumentación , Masculino , Ratones , Ratones Endogámicos C57BL , Imagen de Perfusión/instrumentación , Factores de Tiempo
18.
Med Phys ; 44(12): 6456-6460, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29044632

RESUMEN

PURPOSE: Magnetic particle imaging is a tomographic imaging modality capable of determining the distribution of magnetic nanoparticles with high temporal resolution. The spatial resolution of magnetic particle imaging is influenced by the gradient strength of the selection field used for spatial encoding. By increasing the gradient strength, the spatial resolution is improved, but at the same time the imaging volume decreases. For a high-resolution image of an extended field-of-view, a multipatch approach can be used by shifting the sampling trajectory in space. As the total imaging timescales with the number of patches, the downside of the multipatch method is the degradation of the temporal resolution. METHODS: The purpose of this work was to develop a scanning procedure incorporating the advantages of imaging at multiple gradient strengths. A low-resolution overview scan is performed at the beginning followed by a small number of high-resolution scans at adaptively detected locations extracted from the low-resolution scan. RESULTS: By combining all data during image reconstruction, it is possible to obtain a large field-of-view image of anisotropic spatial resolution. It is measured in a fraction of time compared to a fully sampled high-resolution field of view image. CONCLUSIONS: Magnetic particle imaging is a flexible imaging method allowing to rapidly scan small volumes. When scaling magnetic particle imaging from small animal to human applications, it will be essential to keep the acquisition time low while still capturing larger volumes at high resolution. With our proposed adaptive multigradient imaging sequence, it is possible to capture a large field of view while keeping both the temporal and the spatial resolution high.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imanes , Tomografía , Factores de Tiempo
19.
Sci Rep ; 7(1): 6872, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761103

RESUMEN

Superparamagnetic iron-oxide nanoparticles can be used in medical applications like vascular or targeted imaging. Magnetic particle imaging (MPI) is a promising tomographic imaging technique that allows visualizing the 3D nanoparticle distribution concentration in a non-invasive manner. The two main strengths of MPI are high temporal resolution and high sensitivity. While the first has been proven in the assessment of dynamic processes like cardiac imaging, it is unknown how far the detection limit of MPI can be lowered. Within this work, we will present a highly sensitive gradiometric receive-coil unit combined with a noise-matching network tailored for the imaging of mice. The setup is capable of detecting 5 ng of iron in-vitro with an acquisition time of 2.14 sec. In terms of iron concentration we are able to detect 156 µg/L marking the lowest value that has been reported for an MPI scanner so far. In-vivo MPI mouse images of a 512 ng bolus and a 21.5 ms acquisition time allow for capturing the flow of an intravenously injected tracer through the heart of a mouse. Since it has been rather difficult to compare detection limits across MPI publications we propose guidelines to improve the comparability of future MPI studies.


Asunto(s)
Diagnóstico por Imagen/instrumentación , Nanopartículas de Magnetita , Animales , Diagnóstico por Imagen/métodos , Diagnóstico por Imagen/normas , Corazón/diagnóstico por imagen , Límite de Detección , Campos Magnéticos , Ratones
20.
IEEE Trans Med Imaging ; 35(11): 2476-2485, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27323359

RESUMEN

Magnetic Particle Imaging (MPI) is an emerging technology in the field of (pre)clinical imaging. The acquisition of a particle signal is realized along specific sampling trajectories covering a defined field of view (FOV). In a system matrix (SM) based reconstruction procedure, the commonly used acquisition path in MPI is a Lissajous trajectory. Such a trajectory features an inhomogeneous coverage of the FOV, i.e. the center region is sampled less dense than the regions towards the edges of the FOV. Conventionally, the respective SM acquisition and the subsequent reconstruction do not reflect this inhomogeneous coverage. Instead, they are performed on an equispaced grid. The objective of this work is to introduce a sampling grid that inherently features the aforementioned inhomogeneity by using node points of Lissajous trajectories. Paired with a tailored polynomial interpolation of the reconstructed MPI signal, the entire image can be recovered. It is the first time that such a trajectory related non-equispaced grid is used for image reconstruction on simulated and measured MPI data and it is shown that the number of sampling positions can be reduced, while the spatial resolution remains constant.


Asunto(s)
Diagnóstico por Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Nanopartículas de Magnetita/uso terapéutico , Algoritmos , Simulación por Computador , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...