Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Med Imaging ; 41(11): 3231-3241, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35666795

RESUMEN

In recent years, there were many suggestions regarding modifications of the well-known U-Net architecture in order to improve its performance. The central motivation of this work is to provide a fair comparison of U-Net and its five extensions using identical conditions to disentangle the influence of model architecture, model training, and parameter settings on the performance of a trained model. For this purpose each of these six segmentation architectures is trained on the same nine data sets. The data sets are selected to cover various imaging modalities (X-rays, computed tomography, magnetic resonance imaging), single- and multi-class segmentation problems, and single- and multi-modal inputs. During the training, it is ensured that the data preprocessing, data set split into training, validation, and testing subsets, optimizer, learning rate change strategy, architecture depth, loss function, supervision and inference are exactly the same for all the architectures compared. Performance is evaluated in terms of Dice coefficient, surface Dice coefficient, average surface distance, Hausdorff distance, training, and prediction time. The main contribution of this experimental study is demonstrating that the architecture variants do not improve the quality of inference related to the basic U-Net architecture while resource demand rises.


Asunto(s)
Aprendizaje Profundo , Benchmarking , Tomografía Computarizada por Rayos X/métodos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos
2.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408149

RESUMEN

Our review aimed to assess the current state and quality of publicly available datasets used for automated affect and emotion recognition (AAER) with artificial intelligence (AI), and emphasising cardiovascular (CV) signals. The quality of such datasets is essential to create replicable systems for future work to grow. We investigated nine sources up to 31 August 2020, using a developed search strategy, including studies considering the use of AI in AAER based on CV signals. Two independent reviewers performed the screening of identified records, full-text assessment, data extraction, and credibility. All discrepancies were resolved by discussion. We descriptively synthesised the results and assessed their credibility. The protocol was registered on the Open Science Framework (OSF) platform. Eighteen records out of 195 were selected from 4649 records, focusing on datasets containing CV signals for AAER. Included papers analysed and shared data of 812 participants aged 17 to 47. Electrocardiography was the most explored signal (83.33% of datasets). Authors utilised video stimulation most frequently (52.38% of experiments). Despite these results, much information was not reported by researchers. The quality of the analysed papers was mainly low. Researchers in the field should concentrate more on methodology.


Asunto(s)
Inteligencia Artificial , Electrocardiografía , Emociones , Humanos , Modalidades de Fisioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...