Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Appl Opt ; 60(19): D43-D51, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34263827

RESUMEN

We present the inscription of narrow-linewidth fiber Bragg gratings (FBGs) into different types of multicore fibers (MCFs) using ultrashort laser pulses and the phase mask technique, which can act as notch filters. Such filters are required, e.g., to suppress light emitted by hydroxyl in the Earth's upper atmosphere, which disturbs ground-based observation of extraterrestrial objects in the near infrared. However, the inscription into a commercially available seven-core fiber showed a quite large core-to-core deviation of the resonance wavelength of up to 0.45 nm. Two options are presented to overcome this: first, we present the photo-treatment of the FBGs to tune the resonance wavelength, which allows for sufficient resonance shifts. Second, adapted MCFs containing 12 cores, arranged on a circle, are fabricated. For this, two different fabrication procedures were investigated, namely, the mechanical drilling of the preform for a rod-in-tube version as well as a stack-and-draw approach. Both adapted MCFs yielded significant improvements with core-to-core wavelength variations of the FBGs of only about 0.18 nm and 0.11 nm, respectively, sufficient to fulfill the requirements for astronomical filter applications as discussed above.

2.
Opt Express ; 28(22): 33456-33474, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33115008

RESUMEN

In this paper we present numerical and experimental results revealing that the mode instability threshold of highly Yb-doped, Ce/Al co-doped pedestal fibers is affected by the size of the index-increased pedestal structure surrounding the core. An alternative preparation technology for the realization of large mode area fibers with very large Al-doped silica pedestals is introduced. Three different pedestal fiber design iterations characterized by low photodarkening were manufactured and tested in counter-pumped amplifier setups. Up to 1.9 kW continuous-wave output power of near-diffraction-limited beam quality (M2 = 1.26) was achieved with an 18/200/420 µm fiber of very low NA = 0.042, limited only by the occurrence of mode instabilities.

3.
Sci Rep ; 8(1): 8677, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875479

RESUMEN

Today, coherent imaging techniques provide the highest resolution in the extreme ultraviolet (XUV) and X-ray regions. Fourier transform holography (FTH) is particularly unique, providing robust and straightforward image reconstruction at the same time. Here, we combine two important advances: First, our experiment is based on a table-top light source which is compact, scalable and highly accessible. Second, we demonstrate the highest resolution ever achieved with FTH at any light source (34 nm) by utilizing a high photon flux source and cutting-edge nanofabrication technology. The performance, versatility and reliability of our approach allows imaging of complex wavelength-scale structures, including wave guiding effects within these structures, and resolving embedded nanoscale features, which are invisible for electron microscopes. Our work represents an important step towards real-world applications and a broad use of XUV imaging in many areas of science and technology. Even nanoscale studies of ultra-fast dynamics are within reach.

4.
Appl Opt ; 57(16): 4618-4632, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29877371

RESUMEN

Ultrashort laser pulses allow for the in-volume processing of glass through non-linear absorption, resulting in permanent material changes and the generation of internal stress. Across the manifold potential applications of this technology, process optimization requires a detailed understanding of the laser-matter interaction. Of particular relevance are the deposition of energy inside the material and the subsequent relaxation processes. In this paper, we investigate the spatio-temporal evolution of free carriers, energy transfer, and the resulting permanent modifications in the volume of glass during and after exposure to femtosecond and picosecond pulses. For this purpose, we employ time-resolved microscopy in order to obtain shadowgraphic and interferometric images that allow relating the transient distributions to the refractive index change profile. Whereas the plasma generation time is given by the pulse duration, the thermal dynamics occur over several microseconds. Among the most notable features is the emergence of a pressure wave due to the sudden increase of temperature and pressure within the interaction volume. We show how the structure of the modifications, including material disruptions as well as local defects, can be directly influenced by a judicious choice of pulse duration, pulse energy, and focus geometry.

5.
Opt Express ; 26(6): 7614-7624, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29609314

RESUMEN

It has been recently shown that photodarkening can significantly reduce the mode instability threshold in high power Yb-doped fiber amplifiers, thus resulting in an even more severe limitation to the scaling of the output average power of these systems. Therefore, an efficient reduction of photodarkening in an Yb-doped active fiber will lead to very significant gains in the output average power delivered by such systems. In this context, it has been reported that photodarkening can be significantly mitigated when co-doping a fiber core with Al and P, which makes this approach potentially appealing to increase the TMI threshold. Unfortunately co-doping the fiber core with Al and P also alters the effective cross-sections of the fiber, which has repercussion in the amplification efficiency. Thus, a fiber with a higher P concentration will exhibit lower cross-sections, therefore requiring a higher Yb-ion concentration to reach a certain desired amplification efficiency. However, increasing the Yb-ion concentration leads to higher photodarkening losses, which might potentially counteract the benefits of using P co-doping. In this paper we present a comparative analysis of the expected performance of different fiber amplifiers for a given constant average heat-load and amplification efficiency as a function of the ratio of Al:P concentration in the fiber core. This study indicates which core compositions are more beneficial for increasing the mode instability threshold in Yb-doped high-power fiber amplifier systems.

6.
Opt Lett ; 43(7): 1519-1522, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29601019

RESUMEN

We present a coherently combined laser amplifier with 16 channels from a multicore fiber in a proof-of-principle demonstration. Filled-aperture beam splitting and combination, together with temporal phasing, is realized in a compact and low-component-count setup. Combined average power of up to 70 W with 40 ps pulses is achieved with combination efficiencies around 80%.

7.
Opt Express ; 26(25): 32417-32432, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30645409

RESUMEN

We present the application of a confocal fluorescence microscope to the analysis of Yb-doped solid-state laser materials, with examples of Yb-doped crystals, photonic crystal fibers and fiber preforms made with different manufacturing processes. Beside the fluorescence lifetime image itself, a microscopic spectral fluorescence emission analysis is presented and spatially resolved emission cross sections are obtained. Doping concentration and its distributions and other laser optical parameters are measured, which help to analyze manufacturing steps. Further properties like photodarkening and saturation are addressed.

8.
Opt Lett ; 42(20): 4179-4182, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29028042

RESUMEN

High-average power laser sources delivering intense few-cycle pulses in wavelength regions beyond the near infrared are promising tools for driving the next generation of high-flux strong-field experiments. In this work, we report on nonlinear pulse compression to 34.4 µJ-, 2.1-cycle pulses with 1.4 GW peak power at a central wavelength of 1.82 µm and an average power of 43 W. This performance level was enabled by the combination of a high-repetition-rate ultrafast thulium-doped fiber laser system and a gas-filled antiresonant hollow-core fiber.

9.
Opt Express ; 25(13): 14892-14899, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28789071

RESUMEN

We investigate the average power scaling of two diode-pumped Yb-doped fiber amplifiers emitting a diffraction-limited beam. The first fiber under investigation with a core diameter of 30 µm was able to amplify a 10 W narrow linewidth seed laser up to 2.8 kW average output power before the onset of transverse mode instabilities (TMI). A further power scaling was achieved using a second fiber with a smaller core size (23µm), which allowed for a narrow linewidth output power of 3.5 kW limited by stimulated Brillouin scattering (SBS). We mitigated SBS using a spectral broadening mechanism, which allowed us to further increase the output power to 4.3 kW only limited by the available pump power. Up to this power level, a high slope efficiency of 90% with diffraction-limited beam quality and without any sign of TMI or stimulated Raman scattering for a spectral dynamic range of higher than -80 dB was obtained.

10.
Appl Opt ; 56(13): 3913-3922, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28463286

RESUMEN

The porosity of zirconia films prepared by plasma ion assisted deposition has been investigated by means of optical (spectrophotometric) and nonoptical analytic techniques such as transmission electron microscopy, x-ray reflection, and energy dispersive x-ray spectroscopy. A discrimination between large (open) and small (closed) pores was achieved by means of measurement of the thermal and vacuum-to-air shift. Depending on the level of plasma assistance during film preparation, the porosity was found to vary between 30 vol. % and nearly 0 vol. %. With decreasing porosity, the surface roughness determined by atomic force microscopy tends to decrease as well.

11.
Sci Rep ; 7(1): 1826, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28500306

RESUMEN

The non-isotropic alignment of molecules can increase the interaction efficiency with propagating light fields. This applies to both emissive and absorptive systems and can be exploited for achieving unprecedented efficiencies of organic opto-electronic devices such as organic light-emitting diodes. Optical analysis has revealed certain phosphorescent emitters to align spontaneously in an advantageous orientation. Unfortunately, established approaches only determine an average orientation because emission patterns solely depend on the second moments of the transition dipole vector distribution. In order to resolve further details of such a distribution, additional differences in the emission characteristics of parallel and perpendicularly oriented emitters need to be introduced. A thin metal layer near the emitters introduces plasmon mediated losses mostly for perpendicular emitters. Then, analyzing the emission at different polarizations allows one to measure emission lifetimes of mostly parallel or mostly perpendicular oriented emitters. This should alter the transient emission when observing the temporal phosphorescence decay under different directions and/or polarizations. The angular width of the orientation distribution can be derived from the degree of such lifetime splitting. Our results suggest a narrow but obliquely oriented molecular ensemble of Ir(MDQ)2(acac) doped into the α-NPD host inside an Organic LED stack.

12.
Opt Lett ; 42(8): 1612-1615, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28409811

RESUMEN

We introduce a modified formulation of the wave propagation method for the efficient simulation of rotationally symmetric micro-optical components. The reformulated algorithm provides an increased computational performance of approximately two orders of magnitude and strongly reduced memory requirements, in comparison to the original formulation. This enables the efficient wave optical simulation of extended micro-optical structures beyond the common thin-element approximation. As a prototypical example, we assess the modified algorithm for the evaluation of straylight induced by diffractive lenses. We find an excellent accuracy, while comparing to rigorous simulations, which justifies the ability to overcome the limitations of the thin-element approximation.

13.
Opt Express ; 25(4): 3006-3012, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241518

RESUMEN

We present modal content measurements (S2) of two different negative curvature hollow-core photonic crystal fibers: a kagome fiber and an ice cream cone fiber. Their sensitivity towards mode matching, bending and polarization is analyzed. For the kagome fiber, a higher order mode suppression of 17dB under optimal conditions was achieved, and for the ice cream cone fiber there was a suppression of up to 42dB. Polarization turned out to be a critical parameter for good higher order mode suppression in both fibers.

14.
Opt Lett ; 42(4): 747-750, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28198855

RESUMEN

The combination of high-repetition-rate ultrafast thulium-doped fiber laser systems and gas-based nonlinear pulse compression in waveguides offers promising opportunities for the development of high-performance few-cycle laser sources at 2 µm wavelength. In this Letter, we report on a nonlinear pulse compression stage delivering 252 µJ, sub-50 fs-pulses at 15.4 W of average power. This performance level was enabled by actively mitigating ultrashort pulse propagation effects induced by the presence of water vapor absorptions.

15.
Appl Opt ; 56(4): C41-C46, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158050

RESUMEN

H2S and particles from the atmosphere can damage silver reflectors. These defects lead to scattering and a reduction of reflectivity. With regard to these risks, the suitability of sputtered SiO2, Al2O3, and SiO2-Al2O3 nanolaminates for the protection of Ag was analyzed. The optical properties, protection properties against H2S, solubility, film stress, and protection properties against particle-induced defect formation have been investigated. Especially in the case of particle-induced defects on protected Ag, differences between the protective coatings are considerable, and the nanolaminate layers have advantageous properties.

16.
Appl Phys B ; 123(1): 17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32214687

RESUMEN

We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to ~30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

17.
Opt Lett ; 41(22): 5170-5173, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27842085

RESUMEN

We present a table-top coherent diffractive imaging (CDI) experiment based on high-order harmonics generated at 18 nm by a high average power femtosecond fiber laser system. The high photon flux, narrow spectral bandwidth, and high degree of spatial coherence allow for ultrahigh subwavelength resolution imaging at a high numerical aperture. Our experiments demonstrate a half-pitch resolution of 15 nm, close to the actual Abbe limit of 12 nm, which is the highest resolution achieved from any table-top extreme ultraviolet (XUV) or x-ray microscope. In addition, sub-30 nm resolution was achieved with only 3 s of integration time, bringing live diffractive imaging and three-dimensional tomography on the nanoscale one step closer to reality. The current resolution is solely limited by the wavelength and the detector size. Thus, table-top nanoscopes with only a few-nanometer resolutions are in reach and will find applications in many areas of science and technology.

18.
Opt Express ; 24(19): 22013-27, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27661936

RESUMEN

Lensless coherent diffractive imaging usually requires iterative phase-retrieval for recovering the missing phase information. Holographic techniques, such as Fourier-transform holography (FTH) or holography with extended references (HERALDO), directly provide this phase information and thus allow for a direct non-iterative reconstruction of the sample. In this paper, we analyze the effect of detector noise on the reconstruction for FTH and HERALDO with linear and rectangular references. We find that HERALDO is more sensitive to this type of noise than FTH, especially if rectangular references are employed. This excessive noise, caused by the necessary differentiation step(s) during reconstruction in case of HERALDO, additionally depends on the numerical implementation. When considering both shot-noise and detector noise, we find that FTH provides a better signal-to-noise ratio (SNR) than HERALDO if the available photon flux from the light source is low. In contrast, at high photon flux HERALDO provides better SNR and resolution than FTH. Our findings will help in designing optimum holographic imaging experiments particularly in the photon-flux-limited regime where most ultrafast experiments operate.

19.
Opt Lett ; 41(17): 4130-3, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27607990

RESUMEN

Thulium-doped fibers with ultra large mode-field areas offer new opportunities for the power scaling of mid-IR ultrashort-pulse laser sources. Here, we present a laser system delivering a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. This performance level has been achieved by optimizing the pulse shape, reducing the overlap with atmospheric absorption lines, and incorporating a climate chamber to reduce the humidity of the atmospheric environment.

20.
Opt Express ; 24(8): 7879-92, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27137230

RESUMEN

The average output power of Yb-doped fiber amplifier systems is currently limited by the onset of transverse mode instabilities. Besides, it has been recently shown that the transverse mode instability threshold can be significantly reduced by the presence of photodarkening in the fiber. Therefore, reducing the photodarkening level of the core material composition is the most straightforward way to increase the output average power of fiber amplifier systems but, unfortunately, this is not always easy or possible. In this paper we present guidelines to optimize the output average power of fiber amplifiers affected by transverse mode instabilities and photodarkening. The guidelines derived from the simulations do not involve changes in the composition of the active material (except for its doping concentration), but can still lead to a significant increase of the transverse mode instability threshold. The dependence of this parameter on the active ion concentration and the core conformation, among others, will be studied and discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...