Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Immunol ; 9(95): eadi7418, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758807

RESUMEN

Immune checkpoint blockade is a promising approach to activate antitumor immunity and improve the survival of patients with cancer. V-domain immunoglobulin suppressor of T cell activation (VISTA) is an immune checkpoint target; however, the downstream signaling mechanisms are elusive. Here, we identify leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) as a VISTA binding partner, which acts as an inhibitory receptor by engaging VISTA and suppressing T cell receptor signaling pathways. Mice with T cell-specific LRIG1 deletion developed superior antitumor responses because of expansion of tumor-specific cytotoxic T lymphocytes (CTLs) with increased effector function and survival. Sustained tumor control was associated with a reduction of quiescent CTLs (TCF1+ CD62Lhi PD-1low) and a reciprocal increase in progenitor and memory-like CTLs (TCF1+ PD-1+). In patients with melanoma, elevated LRIG1 expression on tumor-infiltrating CD8+ CTLs correlated with resistance to immunotherapies. These results delineate the role of LRIG1 as an inhibitory immune checkpoint receptor and propose a rationale for targeting the VISTA/LRIG1 axis for cancer immunotherapy.


Asunto(s)
Antígenos B7 , Linfocitos T CD8-positivos , Glicoproteínas de Membrana , Microambiente Tumoral , Animales , Humanos , Ratones , Antígenos B7/inmunología , Antígenos B7/genética , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/genética , Proteínas de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso , Microambiente Tumoral/inmunología
2.
Cancer Immunol Res ; 7(9): 1497-1510, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31340983

RESUMEN

Immune-checkpoint protein V-domain immunoglobulin suppressor of T-cell activation (VISTA) controls antitumor immunity and is a valuable target for cancer immunotherapy. This study identified a role of VISTA in regulating Toll-like receptor (TLR) signaling in myeloid cells and controlling myeloid cell-mediated inflammation and immunosuppression. VISTA modulated the polyubiquitination and protein expression of TRAF6. Consequently, VISTA dampened TLR-mediated activation of MAPK/AP-1 and IKK/NF-κB signaling cascades. At cellular levels, VISTA regulated the effector functions of myeloid-derived suppressor cells and tolerogenic dendritic cell (DC) subsets. Blocking VISTA augmented their ability to produce proinflammatory mediators and diminished their T cell-suppressive functions. These myeloid cell-dependent effects resulted in a stimulatory tumor microenvironment that promoted T-cell infiltration and activation. We conclude that VISTA is a critical myeloid cell-intrinsic immune-checkpoint protein and that the reprogramming of tolerogenic myeloid cells following VISTA blockade promotes the development of T cell-mediated antitumor immunity.


Asunto(s)
Antígenos B7/metabolismo , Inmunomodulación , Inflamación/etiología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Animales , Antígenos B7/genética , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular , Humanos , Tolerancia Inmunológica , Terapia de Inmunosupresión , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melanoma Experimental , Ratones , Ratones Noqueados , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo , Microambiente Tumoral
3.
Glia ; 66(7): 1432-1446, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29476556

RESUMEN

Disruption of the blood-brain barrier (BBB) following cerebral ischemia is closely related to the infiltration of peripheral cells into the brain, progression of lesion formation, and clinical exacerbation. However, the mechanism that regulates BBB integrity, especially after permanent ischemia, remains unclear. Here, we present evidence that astrocytic N-myc downstream-regulated gene 2 (NDRG2), a differentiation- and stress-associated molecule, may function as a modulator of BBB permeability following ischemic stroke, using a mouse model of permanent cerebral ischemia. Immunohistological analysis showed that the expression of NDRG2 increases dominantly in astrocytes following permanent middle cerebral artery occlusion (MCAO). Genetic deletion of Ndrg2 exhibited enhanced levels of infarct volume and accumulation of immune cells into the ipsilateral brain hemisphere following ischemia. Extravasation of serum proteins including fibrinogen and immunoglobulin, after MCAO, was enhanced at the ischemic core and perivascular region of the peri-infarct area in the ipsilateral cortex of Ndrg2-deficient mice. Furthermore, the expression of matrix metalloproteinases (MMPs) after MCAO markedly increased in Ndrg2-/- mice. In culture, expression and secretion of MMP-3 was increased in Ndrg2-/- astrocytes, and this increase was reversed by adenovirus-mediated re-expression of NDRG2. These findings suggest that NDRG2, expressed in astrocytes, may play a critical role in the regulation of BBB permeability and immune cell infiltration through the modulation of MMP expression following cerebral ischemia.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Permeabilidad Capilar/fisiología , Proteínas/metabolismo , Accidente Cerebrovascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Astrocitos/metabolismo , Astrocitos/patología , Barrera Hematoencefálica/patología , Isquemia Encefálica/patología , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Masculino , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas/genética , Accidente Cerebrovascular/patología
4.
J Neurochem ; 145(2): 139-153, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29315585

RESUMEN

N-myc downstream-regulated gene 2 (NDRG2) is a differentiation- and stress-associated molecule that is predominantly expressed in astrocytes in the central nervous system. In this study, we examined the expression and role of NDRG2 in experimental autoimmune encephalomyelitis (EAE), which is an animal model of multiple sclerosis. Western blot and immunohistochemical analysis revealed that the expression of NDRG2 was observed in astrocytes of spinal cord, and was enhanced after EAE induction. A comparative analysis of wild-type and Ndrg2-/- mice revealed that deletion of Ndrg2 ameliorated the clinical symptoms of EAE. Although Ndrg2 deficiency only slightly affected the inflammatory response, based on the results of flow cytometry, qRT-PCR, and immunohistochemistry, it significantly reduced demyelination in the chronic phase, and, more importantly, neurodegeneration both in the acute and chronic phases. Further studies revealed that the expression of astrocytic glutamate transporters, including glutamate aspartate transporter (GLAST) and glutamate transporter 1, was more maintained in the Ndrg2-/- mice compared with wild-type mice after EAE induction. Consistent with these results, studies using cultured astrocytes revealed that Ndrg2 gene silencing increased the expression of GLAST, while NDRG2 over-expression decreased it without altering the expression of glial fibrillary acidic protein. The effect of NDRG2 on GLAST expression was associated with the activation of Akt, but not with the activation of nuclear factor-kappa B. These findings suggest that NDRG2 plays a key role in the pathology of EAE by modulating glutamate metabolism. Cover Image for this Issue: doi: 10.1111/jnc.14173.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Ácido Glutámico/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Proteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas/genética
5.
J Neurochem ; 139(6): 1124-1137, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27333444

RESUMEN

Accumulating evidence suggests a critical role for the unfolded protein response in multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). In this study, we investigated the relevance of activating transcription factor 6α (ATF6α), an upstream regulator of part of the unfolded protein response, in EAE. The expressions of ATF6α-target molecular chaperones such as glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94) were enhanced in the acute inflammatory phase after induction of EAE. Deletion of Atf6α suppressed the accumulation of T cells and microglia/macrophages in the spinal cord, and ameliorated the clinical course and demyelination after EAE induction. In contrast to the phenotypes in the spinal cord, activation status of T cells in the peripheral tissues or in the culture system was not different between two genotypes. Bone marrow transfer experiments and adoptive transfer of autoimmune CD4+ T cells to recipient mice (passive EAE) also revealed that CNS-resident cells are responsible for the phenotypes observed in Atf6α-/- mice. Further experiments with cultured cells indicated that inflammatory response was reduced in Atf6α-/- microglia, but not in Atf6α-/- astrocytes, and was associated with proteasome-dependent degradation of NF-κB p65. Thus, our results demonstrate a novel role for ATF6α in microglia-mediated CNS inflammation. We investigated the relevance of ATF6α, an upstream regulator of part of the UPR, in EAE. Deletion of Atf6α suppressed inflammation, and ameliorated demyelination after EAE. Bone marrow transfer experiments and adoptive transfer of autoimmune CD4+ T cells revealed that CNS-resident cells are responsible for the phenotypes in Atf6α-/- mice. Furthermore, inflammatory response was reduced in Atf6α-/- microglia, and was associated with degradation of NF-κB p65. Our results demonstrate a novel role for ATF6α in microglia-mediated inflammation. Cover image for this issue: doi: 10.1111/jnc.13346.


Asunto(s)
Factor de Transcripción Activador 6/deficiencia , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Microglía/metabolismo , Animales , Células Cultivadas , Encefalomielitis Autoinmune Experimental/prevención & control , Chaperón BiP del Retículo Endoplásmico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
6.
Parkinsons Dis ; 2016: 6163934, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27057372

RESUMEN

Herp is an endoplasmic reticulum- (ER-) resident membrane protein that plays a role in ER-associated degradation. We studied the expression of Herp and its effect on neurodegeneration in a mouse model of Parkinson's disease (PD), in which both the oxidative stress and the ER stress are evoked. Eight hours after administering a PD-related neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), to mice, the expression of Herp increased at both the mRNA and the protein levels. Experiments using Herpud1 (+/+) and Herpud1 (-/-) mice revealed that the status of acute degeneration of nigrostriatal neurons and reactive astrogliosis was comparable between two genotypes after MPTP injection. However, the expression of a potent antioxidant, heme oxygenase-1 (HO-1), was detected to a higher degree in the astrocytes of Herpud1 (-/-) mice than in the astrocytes of Herpud1 (+/+) mice 24 h after MPTP administration. Further experiments using cultured astrocytes revealed that the stress response against MPP(+), an active form of MPTP, and hydrogen peroxide, both of which cause oxidative stress, was comparable between the two genotypes. These results suggest that deletion of Herpud1 may cause a slightly higher level of initial damage in the nigrastrial neurons after MPTP administration but is compensated for by higher induction of antioxidants such as HO-1 in astrocytes.

7.
J Neurochem ; 132(3): 342-53, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25351847

RESUMEN

To dissect the role of endoplasmic reticulum (ER) stress and unfolded protein response in brain ischemia, we investigated the relevance of activating transcription factor 6α (ATF6α), a master transcriptional factor in the unfolded protein response, after permanent middle cerebral artery occlusion (MCAO) in mice. Enhanced expression of glucose-regulated protein78, a downstream molecular chaperone of ATF6α, was observed in both neurons and glia in the peri-infarct region of wild-type mice after MCAO. Analysis using wild-type and Atf6α(-/-) mice revealed a larger infarct volume and increased cell death in the peri-ischemic region of Atf6α(-/-) mice 5 days after MCAO. These phenotypes in Atf6α(-/-) mice were associated with reduced levels of astroglial activation/glial scar formation, and a spread of tissue damage into the non-infarct area. Further analysis in mice and cultured astrocytes revealed that signal transducer and activator of transcription 3 (STAT3)-glial fibrillary acidic protein signaling were diminished in Atf6α(-/-) astrocytes. A chemical chaperone, 4-phenylbutyrate, restored STAT3-glial fibrillary acidic protein signaling, while ER stressors, such as tunicamycin and thapsigargin, almost completely abolished signaling in cultured astrocytes. Furthermore, ER stress-induced deactivation of STAT3 was mediated, at least in part, by the ER stress-responsive tyrosine phosphatase, TC-PTP/PTPN2. These results suggest that ER stress plays critical roles in determining the level of astroglial activation and neuronal survival after brain ischemia.


Asunto(s)
Factor de Transcripción Activador 6/fisiología , Astrocitos/patología , Isquemia Encefálica/patología , Neuronas/patología , Factor de Transcripción Activador 6/genética , Animales , Muerte Celular/genética , Células Cultivadas , Eliminación de Gen , Proteína Ácida Fibrilar de la Glía/metabolismo , Activación de Macrófagos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Desplegamiento Proteico , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA