Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 16(12): e1009213, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33270639

RESUMEN

Chromosomal inversions play an important role in local adaptation. Inversions can capture multiple locally adaptive functional variants in a linked block by repressing recombination. However, this recombination suppression makes it difficult to identify the genetic mechanisms underlying an inversion's role in adaptation. In this study, we used large-scale transcriptomic data to dissect the functional importance of a 13 Mb inversion locus (Inv4m) found almost exclusively in highland populations of maize (Zea mays ssp. mays). Inv4m was introgressed into highland maize from the wild relative Zea mays ssp. mexicana, also present in the highlands of Mexico, and is thought to be important for the adaptation of these populations to cultivation in highland environments. However, the specific genetic variants and traits that underlie this adaptation are not known. We created two families segregating for the standard and inverted haplotypes of Inv4m in a common genetic background and measured gene expression effects associated with the inversion across 9 tissues in two experimental conditions. With these data, we quantified both the global transcriptomic effects of the highland Inv4m haplotype, and the local cis-regulatory variation present within the locus. We found diverse physiological effects of Inv4m across the 9 tissues, including a strong effect on the expression of genes involved in photosynthesis and chloroplast physiology. Although we could not confidently identify the causal alleles within Inv4m, this research accelerates progress towards understanding this inversion and will guide future research on these important genomic features.


Asunto(s)
Inversión Cromosómica , Regulación de la Expresión Génica de las Plantas , Zea mays/genética , Adaptación Fisiológica , Haplotipos , Polimorfismo Genético , Transcriptoma , Zea mays/metabolismo
2.
G3 (Bethesda) ; 10(11): 4103-4114, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32988993

RESUMEN

The shade avoidance response is a set of developmental changes exhibited by plants to avoid shading by competitors, and is an important model of adaptive plant plasticity. While the mechanisms of sensing shading by other plants are well-known and appear conserved across plants, less is known about the developmental mechanisms that result in the diverse array of morphological and phenological responses to shading. This is particularly true for traits that appear later in plant development. Here we use a nested association mapping (NAM) population of Arabidopsis thaliana to decipher the genetic architecture of the shade avoidance response in late-vegetative and reproductive plants. We focused on four traits: bolting time, rosette size, inflorescence growth rate, and inflorescence size, found plasticity in each trait in response to shade, and detected 17 total QTL; at least one of which is a novel locus not previously identified for shade responses in Arabidopsis Using path analysis, we dissected each colocalizing QTL into direct effects on each trait and indirect effects transmitted through direct effects on earlier developmental traits. Doing this separately for each of the seven NAM populations in each environment, we discovered considerable heterogeneity among the QTL effects across populations, suggesting allelic series at multiple QTL or interactions between QTL and the genetic background or the environment. Our results provide insight into the development and variation in shade avoidance responses in Arabidopsis, and emphasize the value of directly modeling the relationships among traits when studying the genetics of complex developmental syndromes.


Asunto(s)
Arabidopsis , Alelos , Arabidopsis/genética , Inflorescencia , Fenotipo , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA