Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Toxicol Methods ; 127: 107504, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38678804

RESUMEN

We developed a novel, stress-free blood sampling method for minipigs, allowing continuous cortisol monitoring over 24 h. Baseline cortisol levels exhibited both ultradian and diurnal rhythms. During nighttime, smaller ultradian rhythms overlaid a lower baseline cortisol, which increased in sleeping pigs before lights were turned on. Additionally, we developed an analytical tool based on the R package "pracma" to quantify ultradian peak and circadian components of the cortisol profiles. To validate our model, we investigated the effects of Verucerfont, a CRH receptor antagonist, and Venlafaxine, a serotonin-norepinephrine reuptake inhibitor. Verucerfont reduced cortisol levels during the first 9 h without affecting diurnal rhythm. Cortisol peak parameters decreased, with a 31% reduction in overall area under the curve (AUC) and a 38% reduction in ultradian average AUC. Ultradian peaks decreased from 7 to 4.5, with 34% lower amplitude. Venlafaxine maintained plasma concentrations within the targeted human effective range. This method enables us to enhance our understanding of cortisol regulation and provide valuable insights for the impact of investigation drugs on the diurnal and ultradian rhythms of cortisol.


Asunto(s)
Ritmo Circadiano , Hidrocortisona , Porcinos Enanos , Clorhidrato de Venlafaxina , Animales , Porcinos , Hidrocortisona/sangre , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Clorhidrato de Venlafaxina/farmacología , Ritmo Ultradiano/efectos de los fármacos , Ritmo Ultradiano/fisiología , Recolección de Muestras de Sangre/métodos , Área Bajo la Curva , Masculino , Femenino
2.
Biomedicines ; 9(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807251

RESUMEN

Proper skin barrier function is paramount for our survival, and, suffering injury, there is an acute need to restore the lost barrier and prevent development of a chronic wound. We hypothesize that rapid wound closure is more important than immediate perfection of the barrier, whereas specific treatment may facilitate perfection. The aim of the current project was therefore to evaluate the quality of restored tissue down to the molecular level. We used Göttingen minipigs with a multi-technique approach correlating wound healing progression in vivo over three weeks, monitored by classical methods (e.g., histology, trans-epidermal water loss (TEWL), pH) and subsequent physicochemical characterization of barrier recovery (i.e., small and wide-angle X-ray diffraction (SWAXD), polarization transfer solid-state NMR (PTssNMR), dynamic vapor sorption (DVS), Fourier transform infrared (FTIR)), providing a unique insight into molecular aspects of healing. We conclude that although acute wounds sealed within two weeks as expected, molecular investigation of stratum corneum (SC) revealed a poorly developed keratin organization and deviations in lipid lamellae formation. A higher lipid fluidity was also observed in regenerated tissue. This may have been due to incomplete lipid conversion during barrier recovery as glycosphingolipids, normally not present in SC, were indicated by infrared FTIR spectroscopy. Evidently, a molecular approach to skin barrier recovery could be a valuable tool in future development of products targeting wound healing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA