Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38617282

RESUMEN

Human Immunodeficiency Virus (HIV) is widely acknowledged for its profound impact on the immune system. Although HIV primarily affects peripheral CD4 T cells, its influence on the central nervous system (CNS) cannot be overlooked. Within the brain, microglia and CNS-associated macrophages (CAMs) serve as the primary targets for HIV, as well as for the simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological effects and the establishment of a viral reservoir. Given the gaps in our understanding of how these cells respond in vivo to acute CNS infection, we conducted single-cell RNA sequencing (scRNA-seq) on myeloid cells from the brains of three rhesus macaques 12-days after SIV infection, along with three uninfected controls. Our analysis revealed six distinct microglial clusters including homeostatic microglia, preactivated microglia, and activated microglia expressing high levels of inflammatory and disease-related molecules. In response to acute SIV infection, the population of homeostatic and preactivated microglia decreased, while the activated and disease-related microglia increased. All microglial clusters exhibited upregulation of MHC class I molecules and interferon-related genes, indicating their crucial roles in defending against SIV during the acute phase. All microglia clusters also upregulated genes linked to cellular senescence. Additionally, we identified two distinct CAM populations: CD14lowCD16hi and CD14hiCD16low CAMs. Interestingly, during acute SIV infection, the dominant CAM population changed to one with an inflammatory phenotype. Notably, specific upregulated genes within one microglia and one macrophage cluster were associated with neurodegenerative pathways, suggesting potential links to neurocognitive disorders. This research sheds light on the intricate interactions between viral infection, innate immune responses, and the CNS, providing valuable insights for future investigations.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38082786

RESUMEN

Skull-stripping, an important pre-processing step in neuroimage computing, involves the automated removal of non-brain anatomy (such as the skull, eyes, and ears) from brain images to facilitate brain segmentation and analysis. Manual segmentation is still practiced, but it is time-consuming and highly dependent on the expertise of clinicians or image analysts. Prior studies have developed various skull-stripping algorithms that perform well on brains with mild or no structural abnormalities. Nonetheless, they were not able to address the issue for brains with significant morphological changes, such as those caused by brain tumors, particularly when the tumors are located near the skull's border. In such cases, a portion of the normal brain may be stripped, or the reverse may occur during skull stripping. To address this limitation, we propose to use a novel deep learning framework based on nnUNet for skull stripping in brain MRI. Two publicly available datasets were used to evaluate the proposed method, including a normal brain MRI dataset - The Neurofeedback Skull-stripped Repository (NFBS), and a brain tumor MRI dataset - The Cancer Genome Atlas (TCGA). The method proposed in the study performed better than six other current methods, namely BSE, ROBEX, UNet, SC-UNet, MV-UNet, and 3D U-Net. The proposed method achieved an average Dice coefficient of 0.9960, a sensitivity of 0.9999, and a specificity of 0.9996 on the NFBS dataset, and an average Dice coefficient of 0.9296, a sensitivity of 0.9288, a specificity of 0.9866 and an accuracy of 0.9762 on the TCGA brain tumor dataset.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Cráneo/anatomía & histología , Cráneo/patología , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología
3.
Cancers (Basel) ; 15(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37568660

RESUMEN

Radiomics is a rapidly evolving field that involves extracting and analysing quantitative features from medical images, such as computed tomography or magnetic resonance images. Radiomics has shown promise in brain tumor diagnosis and patient-prognosis prediction by providing more detailed and objective information about tumors' features than can be obtained from the visual inspection of the images alone. Radiomics data can be analyzed to determine their correlation with a tumor's genetic status and grade, as well as in the assessment of its recurrence vs. therapeutic response, among other features. In consideration of the multi-parametric and high-dimensional space of features extracted by radiomics, machine learning can further improve tumor diagnosis, treatment response, and patients' prognoses. There is a growing recognition that tumors and their microenvironments (habitats) mutually influence each other-tumor cells can alter the microenvironment to increase their growth and survival. At the same time, habitats can also influence the behavior of tumor cells. In this systematic review, we investigate the current limitations and future developments in radiomics and machine learning in analysing brain tumors and their habitats.

4.
Front Genet ; 13: 980338, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212141

RESUMEN

COVID-19 has caused over 528 million infected cases and over 6.25 million deaths since its outbreak in 2019. The uncontrolled transmission of the SARS-CoV-2 virus has caused human suffering and the death of uncountable people. Despite the continuous effort by the researchers and laboratories, it has been difficult to develop reliable efficient and stable vaccines to fight against the rapidly evolving virus strains. Therefore, effectively preventing the transmission in the community and globally has remained an urgent task since its outbreak. To avoid the rapid spread of infection, we first need to identify the infected individuals and isolate them. Therefore, screening computed tomography (CT scan) and X-ray can better separate the COVID-19 infected patients from others. However, one of the main challenges is to accurately identify infection from a medical image. Even experienced radiologists often have failed to do it accurately. On the other hand, deep learning algorithms can tackle this task much easier, faster, and more accurately. In this research, we adopt the transfer learning method to identify the COVID-19 patients from normal individuals when there is an inadequacy of medical image data to save time by generating reliable results promptly. Furthermore, our model can perform both X-rays and CT scan. The experimental results found that the introduced model can achieve 99.59% accuracy for X-rays and 99.95% for CT scan images. In summary, the proposed method can effectively identify COVID-19 infected patients, could be a great way which will help to classify COVID-19 patients quickly and prevent the viral transmission in the community.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...