Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 339: 139717, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37541442

RESUMEN

Access to clean water is the mandatory requirement for every living being to sustain life. So, membrane-based integrated approach of adsorption and separation technology has recently been preferred by scientists over other conventional techniques, for wastewater treatment. Current research focused on the synthesis of novel imidazolium (A1) based IL, which was further functionalized with hydroxyapatite (HAp; extracted from Labeo rohita scales), to create possible solutions towards environmental remediation. Cellulose acetate (CA) was used for the fabrication of three different ionic liquid membranes. All the synthesized products were characterized by FTIR, XRD and TGA. Two dyes of different nature, i.e., congo red (anionic) and crystal violet (cationic) were selected because of their highly toxic and carcinogenic effects, for batch adsorption experiments. Antibacterial activity of the synthesized membranes was also evaluated against S. aureus. Results of the study revealed that CA-HA1 1:2 acted as the best adsorbent towards the removal of crystal violet, exhibiting removal efficiency of 98% with the contact time of 24 h while in case of congo red adsorption, CA-HA1 (1:2) proved as prime adsorbent with the removal efficiency of 96% for the same preceding contact time. Considering the antibacterial character of the synthesized membranes, CA-A1 (1:1) emerged as very efficient antibacterial agent with the inhibition zone of 50 mm after 48 h. The overall behavior of monolayer and multilayer adsorption was witnessed for both dyes while kinetic studies favored the pseudo-second order reaction for all adsorbents.


Asunto(s)
Contaminantes Ambientales , Líquidos Iónicos , Contaminantes Químicos del Agua , Rojo Congo , Líquidos Iónicos/toxicidad , Cinética , Durapatita , Violeta de Genciana/química , Staphylococcus aureus , Colorantes/química , Antibacterianos/toxicidad , Adsorción , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
2.
Chemosphere ; 322: 138151, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36804633

RESUMEN

Dyes contaminated water has caused various environmental and health impacts in developing countries especially Pakistan due to different industrial activities. This issue has been addressed in present study by fabricating biocompatible ionic liquid (IL) membranes for the remediation of Crystal violet (CV) dye from contaminated water. Novel ammonium-based IL such as Triethyl dimethyl ammonium sulfate ([C3A][C2H6]SO4); (A2) was synthesized and further functionalized with hydroxyapatite (HAp; extracted from refused fish scales) resulting in the formation of HA2. Furthermore, A2 and HA2 were then used to fabricate the cellulose acetate (CA) based membranes with different volume ratios. The physicochemical properties of membranes-based composite materials were investigated using FTIR, XRD, and TGA and used for the adsorption of CV in the closed batch study. In results, CA-HA2 (1:2) showed higher efficiency of 98% for CV reduction, after the contact time of 90 min. Kinetic studies showed that the adsorption of CV followed the pseudo-second-order kinetic model for all adsorbents. The antibacterial properties of the synthesized membrane were investigated against gram-positive strain, S. aureus and CA-A2 (1:1) showed better antibacterial properties against S. aureus. The developed membrane is sustainable to be used for the adsorption of CV and against bacteria.


Asunto(s)
Compuestos de Amonio , Líquidos Iónicos , Contaminantes Químicos del Agua , Líquidos Iónicos/química , Cinética , Staphylococcus aureus , Colorantes/química , Violeta de Genciana , Agua , Antibacterianos/farmacología , Contaminación del Agua , Adsorción , Contaminantes Químicos del Agua/química
3.
Biomed Res Int ; 2014: 831989, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24689059

RESUMEN

The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude) than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption kinetics indicates that a good correlation exists between distribution coefficient (Kd) and soil organic carbon. A general increase in Kd is noted with increase in induced concentration due to the formation of bound or aged residue.


Asunto(s)
Agricultura , Metil Paratión/química , Modelos Químicos , Paratión/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Suelo , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA