Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Res Commun ; 13(1): 43-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164367

RESUMEN

Milk protein genetic polymorphisms are associated with economically important traits in dairy cattle. The objective of this study is to genotype a single nucleotide polymorphism (SNP) responsible for the amino acid changes in the beta-lactoglobulin (ß-Lg) variants A and B on 85 unrelated DNA representing Algerian cattle populations: Chelifienne (28), Cheurfa (31) and Guelmoise (26). The method used is the PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism). Genetic polymorphism was detected by digestion of PCR products amplified of exon II of ß-Lg gene by with the endonuclease HaeIII enzyme. The results revealed that the amplified product was observed as 247 bp. Restriction digestion with HaeIII revealed three genotypes: AA, AB and BB. The genotypic frequencies of AA, AB and BB genotypes were 0.08, 0.41, 0.50; 0.08, 0.41, 0.50 and 0.01, 0.19, 0.56 in Chelifienne, Cheurfa and Guelmoise and respectively. Frequency of AA genotype was absent in Guelmoise population. Frequencies of A and B alleles were 0.29 and 0.71 in both Chelifienne and Cheurfa and 0.25 and 0.75 Guelmoise population. These results further confirm that Bos torus cattle are predominantly of ß-Lactoglobulin B type. The Chi-square test at p-value < 0.05 results revealed that the Chelifienne and Cheurfa populations were in Hardy-Weinberg equilibrium and the results are not significant for the Guelmoise. This genetic information could be useful to estimate the effect of polymorphism on different milk production of Algerian bovine populations.

2.
Genet Sel Evol ; 55(1): 94, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114899

RESUMEN

BACKGROUND: The Algerian honey bee population is composed of two described subspecies A. m. intermissa and A. m. sahariensis, of which little is known regarding population genomics, both in terms of genetic differentiation and of possible contamination by exogenous stock. Moreover, the phenotypic differences between the two subspecies are expected to translate into genetic differences and possible adaptation to heat and drought in A. m. sahariensis. To shed light on the structure of this population and to integrate these two subspecies in the growing dataset of available haploid drone sequences, we performed whole-genome sequencing of 151 haploid drones. RESULTS: Integrated analysis of our drone sequences with a similar dataset of European reference populations did not detect any significant admixture in the Algerian honey bees. Interestingly, most of the genetic variation was not found between the A. m. intermissa and A. m. sahariensis subspecies; instead, two main genetic clusters were found along an East-West axis. We found that the correlation between genetic and geographic distances was higher in the Western cluster and that close-family relationships were mostly detected in the Eastern cluster, sometimes at long distances. In addition, we selected a panel of 96 ancestry-informative markers to decide whether a sampled bee is Algerian or not, and tested this panel in simulated cases of admixture. CONCLUSIONS: The differences between the two main genetic clusters suggest differential breeding management between eastern and western Algeria, with greater exchange of genetic material over long distances in the east. The lack of detected admixture events suggests that, unlike what is seen in many places worldwide, imports of queens from foreign countries do not seem to have occurred on a large scale in Algeria, a finding that is relevant for conservation purposes. In addition, the proposed panel of 96 markers was found effective to distinguish Algerian from European honey bees. Therefore, we conclude that applying this approach to other taxa is promising, in particular when genetic differentiation is difficult to capture.


Asunto(s)
Cruzamiento , Flujo Genético , Humanos , Abejas/genética , Animales , Secuenciación Completa del Genoma/veterinaria , Polimorfismo de Nucleótido Simple , Estructuras Genéticas
3.
Anim Biotechnol ; 33(3): 457-467, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32787620

RESUMEN

Local chicken populations are a major source of food in the rural areas of Algeria. However, their origin has not been well characterized. The objectives of this study were to assess genetic diversity and maternal origin of domestic chicken from five agro-ecological regions of western Algeria: coastal (CT), inland plains (IP), highlands (HL), mountains (MT) and sahara (SH, including Oasis, Req and Erg regions). A set of 88 mitochondrial DNA (mtDNA) D-loop sequences including the hypervariable region I (HV1) were analyzed. From the 397 bp D-loop sequence, 20 variable sites that defined 13 haplotypes were identified in Algerian domestic chicken. The haplotype and nucleotide diversity were estimated as 0.597 and 0.003, respectively. Phylogenetic and network analyses indicated the presence of two clades or haplogroups (A and E). Only one clade A haplotype was observed exclusively in the population of mountains, while, Clade E haplotypes were found in almost all Algerian chicken with twelve different haplotypes. These findings suggest that Algerian chickens derived from the most ubiquitous haplogroup which have its root in the Indian subcontinent. Our results provide important information about the origin of the North-West African chicken and the historical dispersal of the first chicken populations into African continent.


Asunto(s)
Pollos , ADN Mitocondrial , Argelia , Animales , Pollos/genética , ADN Mitocondrial/genética , Variación Genética/genética , Haplotipos/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...